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Abstract 
 

Aims: A practicalshape optimization technique is developed, using thedual reciprocity boundary element 
method (DRBEM) with the golden-section search algorithm based on uniform bicubic B-splines, for 
rotating magneto-thermo-viscoelastic functionally graded anisotropic (FGA) structures subjected to a 
moving heat source in the context of the Green and Naghdi theory of type III. 
Study Design: Original Research Paper. 
Place and Duration of Study: Jamoum University College, Mathematics Department, between July 
2016 and August 2017. 
Methodology: An implicit-implicit staggered algorithm was proposed for use with the DRBEM to obtain 
the final DRBEM coupled linear system of equations for displacements and temperature that describe the 
magneto-thermo-viscoelastic structural analysis problem. An implicit differentiation of the discretized 
dual reciprocity boundary integral equation with respect to design variables is used to calculate shape 
displacement sensitivities of anisotropic materials with very high accuracy. This method allows the 
coupling between optimization technique and a dual reciprocity boundary element method. The feasible 
direction method was developed and implemented for use with the one-dimensional golden-section search 
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technique based on uniform bicubic B-splines, as a numerical optimization method for minimizing weight 
while satisfying all of the constraints. 
Results: The optimum shape design of fillet in tension bars used as the numerical example in order to 
verify the formulation and the implementation of the proposed technique. The numerical results show our 
technique is efficient and precise. 
Conclusion: From the research that has been performed, it is possible to conclude that the optimal shape 
of the top half of the fillet under stress constraint based on magneto-thermo-viscoelasticity is crucial 
when magneto-thermoviscoelastic field is sensitive to boundary shape. Also from this knowledge of the 
variation of the displacements and temperature sensitivities with time for magneto-thermo-viscoelastic 
FGA structures, we can design various magneto-thermoviscoelastic structures to meet specific 
engineering requirements and utilize within which to place new information can be more effective. 
 

 
Keywords:  Dual reciprocity boundary element method; Shape Optimization; Design sensitivity analysis; 

Implicit differentiation method; Feasibledirection method; Functionally graded anisotropic 
structures; Golden-section search algorithm. 

 
2010 mathematics subject classification: 65M38 - 65K05   - 74B05   - 74E05  - 74F05   - 74H05  - 74H15  - 
74S20  - 90C31. 
 

1 Introduction 
 
Biot [1] formulated the classical coupled thermo-elasticity (CCTE) theory to overcome the paradox 
ingrained in the classical uncoupled thermo-elasticity (CUTE) theory that elastic changes have no effect on 
temperature. The parabolic type of heat equations for both theories predicting infinite speeds of propagation 
for heat waves which is a physically unreasonable result. Lord and Shulman [2] introduced an extended 
thermo-elasticity (ETE) theory, which is also known as the theory of generalized thermoelasticity with one 
relaxation time. The hyperbolic heat equation connected with this theory resolves the infinite speeds of 
propagation paradox ingrained in both the CUTE and CCTE theories of thermoelasticity. Another 
thermoelasticity theory that admits the second sound effect is reported by Green and Lindsay [3] who 
developed temperature-rate-dependent thermo-elasticity (TRDTE) theory, which is also called as the theory 
of generalized thermoelasticity with two relaxation times by introducing two relaxation times that relate the 
stress and entropy to the temperature. After that, an alternative approach in the formulation of a theory 
predicting the finite propagation speed of the thermal disturbances is due to Green and Naghdi [4,5] where 
they developed three models for generalized thermoelasticity which are labeled as models I, II and III. 
 
In the past few decades, the scientific research in thermoelasticfunctionally graded anisotropic (FGA) 
structureshas become very important due to its manyengineering industries and applications [6-25]. In recent 
years,the structural optimization research for thermoelastic FGA structures has become a rapidly developing 
area of research in computational mechanics [26-28]. 
 
The dual reciprocity boundary element method (DRBEM) is a very effective method for converting the 
domain integral into a boundary, it has been highly successful in a very wide range of engineering 
applications [29-39]. 
 
Based on the approach presented in [40], the purpose of this paper is to propose a new shape optimization 
technique for rotating magneto-thermo-viscoelastic FGA structures placed in a constant primary magnetic 
field and subjected to a moving heat source in the context of the Green and Naghdi theory of type III. A 
predictor-corrector implicit-implicit time-stepping staggered algorithm was developed and implemented for 
use with the bicubic B-splines DRBEM to obtain the solution for the displacement and temperature fields. 
An implicit differentiation method of the dual reciprocity boundary integral equation with respect to design 
variables is used to calculate shape displacements and temperature sensitivities of anisotropic materials with 
very high accuracy. The feasible direction method based on golden-section search algorithm was used as a 
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numerical optimization strategy for minimizing weight while satisfying all of the constraints. The optimum 
shape design of the fillet in tension bars used as the numerical example in order to verify the formulation and 
the implementation of the proposed technique.  
 

2 Formulation of the Problem 
 
We shall consider the FGA structure in -plane occupies the region  under magneto-thermo-visco-

mechanical effects. Also, we have assumed in this paper that the structure graded along the  direction. 
 
The governing equations for rotating magneto-thermo-viscoelastic FGA structures in the context of the 
Green and Naghdi theory of type III can be written as (Fahmy [41])  
 

 
 

 
 

 
 

 
 

Where  is the mechanical stress tensor,  is the Maxwell's electromagnetic stress tensor,  is the 

displacement,  is the temperature,  is the reference temperature,  and  are respectively, the 

constant elastic moduli and stress-temperature coefficients of the anisotropic medium,  is the 

viscoelastic material constant,  is the viscoelastic relaxation time,  is the magnetic permeability,  is the 

perturbed magnetic field,  is the magnetic intensity vector,  is the uniform angular velocity,  is the 

heat conductivity coefficients,  is the second order tensor of new material constants associated with the 

Green and Naghdi theories,  is the density,  is the specific heat capacity,  is the time,  is the moving 

heat source and  is a rational number. 
 
In addition to that, the following conditions for our problem could be considered. 
 

 
 
A superposed dot denotes differentiation with respect to the time and a comma followed by a subscript 
denotes partial differentiation with respect to the corresponding coordinates. 
 

3 Numerical Implementation 
 
By using Eqs. (2) and (3), we can write (1) as follows 
 

 
 

where the inertia term , the temperature gradient  and rotation term  are treated as the body 
forces. 
 
The field equations may be expressed in operator form as follows 
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where the operators , ,  and  are defined as follows: 
 

 
 

 
 
where 
 

 
 

. 

 
Using the weighted residual method (WRM), the differential equation (16) can be transformed into the 
following integral equation 
 

 
 

Now, we choose the fundamental solution  defined by  

 

 
 
as weighting function 
 
The corresponding traction field can be written as 
 

 
 
The magneto-thermo-viscoelastic traction vector can be represented by 
 

 
 

Applying integration by parts to (10) using the sifting property of the Dirac distribution, with (12) and (13), 
we can write the following elastic integral representation formula 

 
 

The fundamental solution  of the thermal operator  is defined by 
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By implementing the WRM and integration by parts, the differential equation (7) is converted to the 
following thermal reciprocity equation 

 
 

Where the heat fluxes are independent of the elastic field and can be expressed as follows: 
 

 
 

 
 
By using the sifting property, we get from (16) the thermal integral representation formula 
 

 
 

The integral representation formulae of elastic and thermal fields (14) and (19) can be combined to form a 
single equation as follows 
 

 
 
For our purpose, it is convenient to use the following contracted notation for introducing the generalized 
magneto-thermo-viscoelastic vectors and tensors:  
 

 
 

 
 

 
 

 
 

 
 
Using the contracted notation described in equations (21) - (25) above, the magneto-thermo-viscoelastic 
representation formula (20) can be written as: 

 
 

The vector  can be splitted as follows: 
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Where 
 

 
 

 
 

 
 

 
 

 
 
The magneto-thermo-viscoelastic representation formula (20) can also be written in matrix form as follows: 
 

 
 
Our task now is to implement the DRBEM. To transform the domain integral in (26) to the boundary, we 

approximate the source vector  in the domain as usual by a series of given tensor functions  and 

unknown coefficients  
 

 
 
Thus, the magneto-thermo-viscoelastic representation formula (26) can be written in the following form 
 

 
 
By applying the WRM to the following inhomogeneous elastic and thermal equations: 
 

 
 

 
 

where the weighting functions are selected as the elastic and thermal fundamental solutions  and . 
Then The elastic and thermal representation formulae are given as follows (Fahmy [41]) 
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By combining the dual representation formulae of elastic and thermal fields, we obtain the following 
combined single equation  
 

 
 
With the substitution of (40) into (35), the dual reciprocity representation formula of coupled magneto-
thermo-viscoelasticity can be expressed as follows 
 

 
 

Now the source term in equation (40) is approximated by a series of known tensor functions  and 

unknown tensor coefficients  as follows 

 
 
According to the Lyapunov-Tauber theorem, we assumed that we have bicubic B-spline surface, as follows 
(Ushatov et al. [42]) 
 

 
 

where  and  are the entire surface coordinates,  is a tensor-product B-spline, the 

functions  and  are univariate cubic B-splines and the control points ( ) are arranged 

in a rectangular topology , then we have 

 

 
 

where  and  are single surface patch only coordinates. 
 

Hence, the traction particular solution  and the source function   can be evaluated as 
 

 
 
According to the steps described in Fahmy [43], the dual reciprocity boundary integral equation (41) can be 
written in the following system of equations 
 

 
 

where the matrix  includes the fundamental solution  and the matrix  includes the modified 

fundamental tensor  with the coupling term 
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According to the technique proposed by Partridge et al. (Partridge et al. [32]), the generalized displacements 

 are approximated in terms of a series of known tensor functions  and unknown tensor coefficients  

 
 
Where 
 

 
 

The generalized displacement gradients can be approximated in terms of the derivatives of tensor functions 
as follows 
 

 
 

Now, the source terms are approximated using Eq. (29) as follows 
 

 
 
Now, we use the point collocation procedure described in Gaul et al. (Gaul et al. [44]) and applied it to (34) 
and (47). This leads to the following system of equations 
 

 
 
Similarly, the application of the point collocation procedure to the source terms equations (50), (30), (31) 
and (32) leads to the following system of equations 
 

 
 

 
 

 
 

 
 

where ,  and are matrices. 
 

Solving the system (51) for  and  yields 
 

 
 

Now, the coefficients  can be expressed in terms of nodal values of the unknown displacements , 

velocities  and accelerations  as follows: 
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By developing and implementing an implicit-implicit staggered algorithm of Farhat et al. (Farhat et al. [45]) 
for use with the DRBEM for solving the governing equations which can be written in a more convenient 
form after substitution of Eq. (57) into Eq. (46) as follows: 
 

 
 

 
 
Where 
 

   

   

  
 

 
  

 

Where , , ,  and  represent the capacity, conductivity, volume, mass, damping and stiffness 

matrices, respectively,  and  represent the acceleration, velocity, displacement, temperature and 

external force vectors, respectively, ,  and  are coupling matrices. 
 
Hence, the governing equations will take the following coupled system (Farhat et al. [45]): 
 

 
 

 
 

where  and  is the predicted temperature. 
 
Integrating Eq. (58) with the use of trapezoidal rule and Eq. (60), we obtain 
 

 
 

 
 

 
 

 
 
From Eq. (62) we have 

 
 

where  

 
Substituting from Eq. (64) into Eq. (63), we derive 
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Substituting  from Eq. (64) into Eq. (60) we obtain 
 

 
 
Integrating the heat equation (59) using the trapezoidal rule, and Eq. (61) we get 
 

 

 
 

 

 
 

From Eq. (67) we get 
 

 
 

where  

 

Substituting from Eq. (69) into Eq. (68), we have 
 

 

 
 

Substituting  from Eq. (69) into Eq. (61) we obtain 
 

 

 
 
Now, our proposed predictor-corrector procedure for the solution of (65) and (70) is as follows (Fahmy [46-
48]): 
 

(1)  Predict the displacement field:  

(2)  Substituting for  and  from equations (62) and (60) respectively in Eq. (70) and  
(3)  Solve the resulted equation for the temperature field 
(4)  Correct the displacement field using the computed temperature field for the Eq. (65) 
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(5)  Compute , ,  and  from Eqs. (64), (66), (67) and (71) respectively. 

 
4 Shape Design Sensitivity and Optimization 
 
Thus, the design sensitivity analysis is performed by implicit differentiation of equation (60) for the 
displacements and implicit differentiation of equation (61) for temperature that describes the structural 

response with respect to the design variables  which are the coordinates of several nodes on the movable 
part of the boundary. After obtaining the displacement gradients, the stress gradients can be obtained. 
 

let  be a closed bounded plane region whose boundary  consisting of a finite number of smooth curves 

and assuming that  and  are continuous functions and have continuous partial derivatives with respect to 

 and . 
 

 
 

By using the Green's theorem, the area  of the domain  can be written in terms of 

a line integral over the boundary  
 

 
 

If the boundary of the structure is discretized into quadratic isoparametric boundary elements, and the 
coordinates at nodal points can be expressed as  
 

 
 

where  quadratic shape function corresponding to the th quadrilateral element's node number, and 

 is the intrinsic coordinate for the element. Therefore, the area of the domain can be calculated as follows 
 

 
 

 is the Jacobian matrix of the transformation and and  are direction cosines of the unit normal 
vector to the surface of the structure which may be written as 
 

 
 

 
 

Substitution of equations (76) and (77) into equation (75) yields  
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The weight derivative can be calculated by differentiating (75) with respect to the design variable based on 

the consideration that, if  is the  coordinate of a movable node, then 
 

 
 
and 
 

 
 

Therefore 
 

 
 

If  is the  coordinate of a movable node, then  
 

 
 

and 
 

 
 

Therefore 
 

 
 

where weight minimization is equivalent to area minimization. 
 
The general problem that we discuss in the present paper is the minimization of structural weight which must 
satisfy constraints on stresses and geometry. Since both stress and weight constraints are non-linear 
functions of the design variables, then the feasible direction approach has been employed as the 
computational optimization technique. This method determines a usable-feasible direction where the design 
point can be moved in the design space. 
 
Assuming the weight as the objective function that we want to  
 

Minimize                  
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Subject to                                                            
 

 
 

 
 

where ,  and are upper and lower limits of the designvariables respectively, and  
is the domain occupied by the structure. 
 
To solve the current general shape optimization problem, both the objective function and the constraints are 
nonlinear functions of the design variables. It is very difficult to solve the set of nonlinear equations (85)-

(88) analytically, so numerical feasible direction method that starts with the current initial design ,  then 
update using following iteration process until we obtain the optimum design: 
 

 
 

where h is the iteration number, the line step parameter  determines the amount of change in  to find the 

minimum design point along the search direction . 
 
The iteration process is repeated until convergence of the error function, i.e. 
 

 
 

which can be defined as 
 

 
 

where   is the  approximation of the inverse Hessian matrix, which can be given by 
 

 
 

 where denote the identity matrix and denote the transpose of the matrix 
 

 
 

and 
 

 
 

 
 

5 Numerical Results and Discussion 
 
We assume that moving heat source takes the following form (Fahmy [49]) 
 

 

Where , and are respectively the Heaviside unit step function, heat source velocity and heat source 

strength. 
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The optimum shape design of the fillet in tension bars used as the numerical example in order to verify the 
formulation and the implementation of the proposed technique presented in this paper, the material chosen 
for the fillet is monoclinic graphite-epoxy material is chosen for the purpose of numerical calculations, the 
physical data for which is given as follows (Fahmy [50]): 
 
Elasticity tensor 
 

 
 
Mechanical temperature coefficient 
 

 
 

Tensor of thermal conductivity is 
 

 

 

Mass density kg/  and heat capacity  J/(kg K), Oersted,  

Gauss/Oersted, , , .  
 
The present work should be applicable to any magneto-thermo-visco-elastic shape optimization problem in a 
rotating FGA structure. The example considered by Li et al. [51] may be considered as a special case of the 
current general problem. 
 
In the special case under consideration.According to the symmetry, only the top half of the fillet is 
considered (Lee and Kwak [52]). The elements, dimensions, mechanical and thermal boundary conditions of 
the fillet are shown in Fig. 1.  
 

 
 

The segment  is the centerline segment of the fillet. The considered model has been discretized using 33 
quadratic elements to describe the optimization problem which is mathematically translated into determining 

the best shape of   which is to be varied to minimize use of the material and met all stress requirements 
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and the initial shape design chosen as a straight line between fixed points  and , also, the shape design 

variables are selected and numbered from 1 to 9, and small boundary  is specified at each quadratic 

element on  for generating 10 constraints. as shown in Fig. 2.  
 

 
 

At the optimum process, the acceptable violation of each constraint is within 10% of its allowable value, and 
the values of stress constraints at the initial and optimum design are listed in Table 1 with the notice that 
(10% corresponds to E-01 in Table 1). 
 

Table 1. Stress constraints values at the initial and optimum design when ��� = ���� �/�� 
  

Constraint numer Initial Optimum 
1 4.5482E-01 -1.2331E-01 
2 -9.1304E-02 -1.5253E-05 
3 -2.5581E-01 6.9390E-07 
4 -3.6572E-01 -1.3360E-06 
5 -4.5381E-01 3.2370E-06 
6 -5.3212E-01 1.8790E-05 
7 -6.0711E-01 -2.5555E-04 
8 -6.8462E-01 -1.3490E-02 
9 -7.7191E-01 -8.8070E-01 
10 -8.9253E-01 -9.7520E-01 

 

The optimum shapes of the deterministic design are obtained for different values of : 1500, 1600, 1700 

and 1800 . Sensitivities are computed when  as seen in Fig. 3. 
 

 
 

The displacement sensitivities variations with the time  are plotted in Figs. 4 and 5 and the temperature 

sensitivity variation with the time  is plotted in Fig. 6 to verify the formulation and the implementation of 
the DRBEM technique. 
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It is shown from these figures that the DRBEM results are in excellent agreement with those obtained using 
the finite element method (FEM) of Li et al. (Li et al. [51]). Our results thus confirm that our technique is 
efficient and precise. 
 

 
 

It is noted that the BEM results obtained with a relative coarse discretization (32 elements) are still more 
accurate than the FEM results which are based on 7264 elements. As a result of the small number of 
elements in the BEM case the required computing power is much smaller than in the FEM case                 
(see Table 2). 
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Table 2. Comparison of computer resources needed for FEM and DRBEM modelling of the top half of 
the fillet 

 
 FEM DRBEM 
Number of nodes 22239 33 
Number of elements 7264 32 
CPU-Time [min.] 120 2 
Memory [Mbyte] 100 0.5 
Disc space [Mbyte] 200 0 
Accuracy of results [%] 2.7 1.7 

 
The proposed technique in the present paper should be applicable to any shape optimization problem of 
generalized magneto-thermoviscoelastic anisotropic material. 
 

6 Conclusion 
 
The dual reciprocity boundary element method is more easy, efficient and cost effective computational 
technique which provides an excellent alternative to the prevailing finite element method for the solution of 
a wide range of scientific and engineering problems and it is widely used by mathematicians and engineers 
for this purpose, it only needs to solve the unknowns on the boundaries, the results of all variables at any 
point in the considered problem are more precise because the integration operation of DRBEM is smoother 
than differentiation operation FEM. 
 
For open or closed boundary problem, the users of DRBEM need only to deal with real boundaries. Most 
magneto-thermoviscoelasticoptimization problems are associated with open boundary problems. For these 
open boundary problems, the users of FEM use artificial boundaries, which are difficult 
to deal with numerically. So, DRBEM becomes the best method for magneto-thermoviscoelastic 
optimization problems. 
 
Also, from the results of the current paper, it is possible to conclude that the optimal shape of the top half of 
the fillet under stress constraint based on magneto-thermo-viscoelasticity is crucial when magneto-thermo-
viscoelastic field is sensitive to boundary shape. Also from this knowledge of the displacements and 
temperature sensitivitiesvariation of the with time for rotating magneto-thermoviscoelastic FGA structures, 
we can design various optimalrotating magneto-thermoviscoelastic structures to meet specific engineering 
requirements and understand the key engineering decisions. 
 
As the future work,the dual reciprocity method, which is used in the present paper can be developed and 
used to solve non-linear and time-dependent complex engineering and physical problems. The method can 
be applied to define sources over the whole domain or only on part of it. 
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