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Abstract

Aims/ objectives: We are interested in a hyperbolic phase field system of Caginalp type,
parameterized by ε for which the solution is a function defined on (0, T )×Ω. We show the existence
of the global attractor for a hyperbolic phase field system of Caginalp type, with homogenous
conditions Dirichlet on the boundary, this system is governed by a polynomial growth potential,
in a bounded and smooth domain. the hyperbolic phase field system of Caginalp type is based
on a thermomecanical theory of deformable continua.
Note that the global attractor is the smallest compact set in the phase space, which is invariant
by the semigroup and attracts all bounded sets of initial data, as time goes to infinity. So the
global attractor allows to make description of asymptotic behaviour about dynamic system.
Study Design: Propagation study of waves.
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Place and Duration of Study: Departement of mathematics (group of research called
G.R.A.F.E.D.P), Sciences Faculty and Technical of Marien NGOUABI University PO Box 69,
between October 2015 and July 2016.
Methodology: To show the existence of the global attractor about the perturbed damped
hyperbolic system, with initial conditions and homogenous conditions Dirichlet on the boundary,
we proceed by proving the dissipativity and regularity of the semigoup associated to the system,
and we then split the semigroup such that we have the sum of two continuous operators, where
the first tends uniformly to zero when the time goes to infinity, and the second is regularizing.
Results: We show the existence of global attractor, about a hyperbolic phase field system of
Caginalp type, governed by polynomial growth potential.
Conclusion: All the procedures explained in the methodology being demonstrated , we can
assert the existence of the smallest compact set of the phase space, invariant by the semigroup
and which attracts all the bounded sets of initial data from a some time.

Keywords: The hyperbolic phase field system of Caginalp type; polynomial growth potential; conditions
Dirichlet on boundary; dissipativity; global attractor.
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1 Introduction and Setting of the Problem
We recall that the global attractor A is the smallest (for the inclusion) compact set of the phase
space which is invariant by the flow (i.e. S(t)A = A, ∀t ≥ 0) and attracts all bounded sets, of
initial data when time goes to infinity. The property of invariance satisfied by the global attractor
makes sure of its unicity (when the global attractor exists). It is the smallest closed set which
verifies the property of attraction; and it thus appears as a suitable object in view of the study of
the asymptotic behaviour of the system. In fact the global attractor is the smallest compact set of
the phase space which contains the solution of a dynamic system, when time goes to infinity.

The Caginalp phase field system

∂u

∂t
− ∆u + f(u) = θ,

∂θ

∂t
− ∆θ = − ∂u

∂t
,

has been proposed in [1] to model phase transition phenomena, such that melting-solidification
phenomena, in certain classes of materials. In this context, u = u(t, x) denotes the phase-field
or the order parameter, θ = θ(t, x) stands for the relative temperature defined as θ = ∂α

dt
, where

α = α(t, x) is the thermal displacement variable or the primitive of θ and f is the derivative of a
double-well potentiel F .

In this paper, we are based on the following system of Caginalp type

ε
∂2u

∂t2
+

∂u

∂t
− ∆u + f(u) =

∂α

∂t
, (1.1)

∂2α

∂t2
+

∂α

∂t
− ∆

∂α

∂t
−∆α = − u − ∂u

∂t
, (1.2)

with homogenous conditions Dirichlet on the boundary

u|∂Ω = α|∂Ω = 0, (1.3)
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and initial conditions

u|t=0 = u0,
∂u

∂t
|t=0 = u1, α|t=0 = α0,

∂α

∂t
|t=0 = α1, (1.4)

which is the hyperbolic relaxation system of Caginalp phase-field based on the type III (see [4]). Ω
is a bounded and smooth domain of class C2 in Rn (1 ≤ n ≤ 3), ∂Ω the smooth boundary of Ω,
and ε > 0 is a relaxation parameter.

Hypotheses of potential f

f is of class C2, (1.5)
f(0) = 0, (1.6)
−c0 ≤ F (s) ≤ f(s)s + c1, c0 ≥ 0, c1 ≥ 0, s ∈ R, (1.7)

with F (s) =

∫ s

0

f(τ)dτ,

|f ′(s)| ≤ c2(|s|2p + 1), c2 > 0, p > 0, s ∈ R, (1.8)
f ′(s) ≥ −c3, c3 ≥ 0, s ∈ R. (1.9)

Very often, we will need restrictions on p when n = 3; these will be precised when needed.

Our aim in this paper is to show the existence of global attractor of the hyperbolic relaxation
system (1.1)-(1.4).

Such studies have already been made in many works; in the case of a parabolic-hyperbolic phase-field
system (see [2]-[7]). We can also mention the recent work of Daniel Moukoko, for example [7] and [8]
in which the hyperbolic system was the subject of a study with regular potential f(s) = s3 − s, and
[9] in which the hyperbolic relaxation system was the subject of a study with a singular potential. In
[6] Doumbé Bongola brice Landry has studied the same system as in this article, but the parameter
of relaxation ε = 0.

2 Notations
*(., .) denotes the scalar product on L2(Ω), and ‖.‖ the associated norm.
*(., .)X denotes the scalar product on X, and ‖.‖X the associated norm.
*|Ω| is a measure of Ω.
*Hκ(Ω) = Wκ,2(Ω) is Sobolev classic space.
*εκ(ε) coincide with [Hκ+1(Ω) × Hκ(Ω)] ∩ {ζ|∂Ω = 0} if ε > 0 and with [Hκ+1(Ω) × Hκ−1(Ω)] ∩
{ζ|∂Ω = 0} if ε = 0, whenever the traces make sense. Note that when κ = 0, we write ε(ε) instead
of ε0(ε).
*‖ . ‖2εκ(ε) with ε > 0, is energy norm in εκ(ε) for the equation (1.1) with Dirichlet boundary
counditions, defined by

‖ζv(t)‖2εκ(ε) = ‖
(
v(t), ∂v(t)

∂t

)
‖2εκ(ε) = ‖v‖2Hκ+1 + ε‖ ∂v

∂t
‖2Hκ + ‖ ∂v

∂t
‖2Hκ−1 .

*cp is the constant of Poincaré.

3 Preliminary Results
We begin by recalling below the two theorems (see [10] Theorem 3.2 and Theorem 3.3) very useful
later.
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Theorem 3.1 If (u0, u1, α0, α1) ∈ H1
0 (Ω)× L2(Ω)×H1

0 (Ω)× L2(Ω) and F (u0) < +∞, then the
problem (1.1)-(1.4) has a unique solution (u, α) such that u, α ∈ L∞(0, T ;H1

0 (Ω)),
∂u
∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L2(Ω)) and ∂α

∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), for all
T > 0.

With more regularity we got the second theorem

Theorem 3.2 If (u0, u1, α0, α1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)× (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω), then
the problem (1.1)-(1.4) has a unique solution (u, α) such that u, α ∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)),
∂u
∂t
∈ L∞(0, T ;H1

0 (Ω))∩L2(0, T ;H1
0 (Ω)), ∂α

∂t
∈ L∞(0, T ;H1

0 (Ω))∩ L2(0, T ;H2(Ω)∩H1
0 (Ω)) and

∂2u
∂t2

, ∂
2α
∂t2
∈ L2(0, T ;L2(Ω)), for all T > 0.

We have thanks to the Theorems 3.1 and 3.2, two respective phase spaces

Φ0 = ε(ε)×H1
0 (Ω)× L2(Ω)

and
Φ1 = ε1(ε)×

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)

and we have two energy norms for the system (1.1)-(1.4), in those phase spaces

‖(ζu, α, ∂α∂t )‖2Φκ = ‖ζu‖2εκ(ε) + ‖α‖2Hκ+1 + ‖ ∂α
∂t
‖2Hκ for κ = 0, 1.

We then define the continuous semigroup,

Sε(t) : Φκ −→ Φκ

(ζu0 , α0, α1) 7−→ (ζu(t), α(t),
∂α(t)

∂t
),

for κ = 0, 1, with (ζu(t), α(t), ∂α(t)
∂t

) such that (u, α) is the unique solution of problem (1.1)-(1.4)
and (ζu(0), α(0), ∂α(0)

∂t
) = (ζu0 , α0, α1).

4 Main Results
In this study, we have two main results; the dissipativity and regularity of the semigroup {Sε(t)}t≥0

associated to the problem (1.1)-(1.4) and the existence of the global attractor.

5 Dissipativity and Regularity
The dissipativity and regularity of the semigroup {Sε(t)}t≥0 associated to the problem (1.1)-(1.4)
mean that the semigroup {Sε(t)}t≥0 associated to the problem (1.1)-(1.4), possesses a bounded
absorbing set.

The following lemma gives the uniform estimates of ‖u‖H1 , ‖α‖H1 and ‖ ∂α
∂t
‖ which are independent

of ε.

Lemma 5.1. Assume the hypotheses of Theorem 3.1 verified, ε ≤ 1 and (u, α) the solution of
problem (1.1)-(1.4) such that (ζu(0), α(0), ∂α(0)

∂t
) ∈ Φ0. Then, the solution (u, α) satisfies the

following estimate

‖u(t)‖2H1 + ε‖∂u(t)

∂t
‖2 + ‖α(t)‖2H1 + ‖∂α(t)

∂t
‖2

+

∫ t

0

(‖∂u(τ)

∂t
‖2 + ‖∂α(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C, (5.1)

where the positive constants β, C and the monotonic function Q are independent of ε.
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Proof. We multiply (1.1) by u and (1.2) by α and we have, integrating over Ω, thanks to (1.7)

d

dt

(
‖u‖2 + 2ε(

∂u

∂t
, u)

)
+ 2

∫
Ω

F (u)dx+ ‖u‖2H1 ≤ cp‖
∂α

∂t
‖2 + 2‖∂u

∂t
‖2 + 2c1|Ω|, (5.2)

d

dt

(
‖α‖2 + ‖α‖2H1 + 2(

∂α

∂t
, α)

)
+ ‖α‖2H1 ≤ 2c2p‖u‖2H1 + 2cp‖

∂u

∂t
‖2 + 2‖∂α

∂t
‖2. (5.3)

We multiply (1.1) by ∂u
∂t

and (1.2) by ∂α
∂t

, we integrate over Ω and we have, summing the two
resulting differential equalities, the following estimate

d

dt

(
‖u‖2H1 + ε‖∂u

∂t
‖2 + 2

∫
Ω

F (u)dx+ ‖α‖2H1 + ‖∂α
∂t
‖2
)

+ 2‖∂u
∂t
‖2

+‖∂α
∂t
‖2 + 2‖∂α

∂t
‖2H1 ≤ cp‖u‖2H1 . (5.4)

Summing γ1(5.2), γ2(5.3) and γ3(5.4), where γ1, γ2 and γ3 > 0 are such that

γ1 − 2c2pγ2 − cpγ3 > 0

2γ3 − 2γ1 − 2cpγ2 > 0,

γ3 − cpγ1 − 2γ2 > 0

we find

d

dt
E3 + C1‖u‖2H1 + C2‖

∂u

∂t
‖2 + 2γ1

∫
Ω

F (u)dx+ γ2‖α‖2H1 + C3‖
∂α

∂t
‖2 + 2‖∂α

∂t
‖2H1 ≤ C (5.5)

where the positive constants Ci and C are independent of ε, and

E3(t) = γ1

(
‖u(t)‖2 + 2ε(

∂u(t)

∂t
, u(t))

)
+ γ2

(
‖α(t)‖2 + ‖α(t)‖2H1 + 2(

∂α(t)

∂t
, α(t))

)
+γ3

(
‖u(t)‖2H1 + ε‖∂u(t)

∂t
‖2 + 2

∫
Ω

F (u(t))dx+ ‖α(t)‖2H1 + ‖∂α(t)

∂t
‖2
)
.

Moreover, for sufficiently small values of γ1 > 0 and γ2 > 0, there exists C > 0 independent of ε
such that

C−1(‖u(t)‖2H1 + ε‖∂u(t)

∂t
‖2 + ‖α(t)‖2H1 + ‖∂α(t)

∂t
‖2) ≤ E3(t)

≤ C(‖u(t)‖2H1 + ε‖∂u(t)

∂t
‖2 + ‖α(t)‖2H1 + ‖∂α(t)

∂t
‖2).

Owing to the above estimate, (5.5) can be rewritten as

d

dt
E3 + βE3 + C1‖

∂u

∂t
‖2 + C2‖

∂α

∂t
‖2H1 ≤ C,

where the positive constants β, Ci and C are independent of ε.

Applying Gronwall’s Lemma, we have

‖u(t)‖2H1 + ε‖∂u(t)

∂t
‖2 + ‖α(t)‖2H1 + ‖∂α(t)

∂t
‖2

+

∫ t

0

(‖∂u(τ)

∂t
‖2 + ‖∂α(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C,

where the positve constants β, C and the monotonic function Q are independent of ε. This gives
the uniform estimates of ‖u‖H1 , ‖α‖H1 and ‖ ∂α

∂t
‖ which are independent of ε. �
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Theorem 5.1. Assume the hypotheses of Theorem 3.1 verified, ε ≤ 1, and (u, α) the solution
of problem (1.1)-(1.4) such that (ζu(0), α(0), ∂α(0)

∂t
) ∈ Φ0. Then, the solution (u, α) satisfies the

following estimate

‖(ζu(t), α(t),
∂α(t)

∂t
)‖2Φ0

+

∫ t

0

(‖∂u(τ)

∂t
‖2 + ‖∂α(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C,

where the positive constants β, C and the monotonic function Q are independent of ε.

Proof. Firstly, we determine the uniform energy estimate of the perturbed damped hyperbolic
equation (1.1) with initial conditions and homogenous conditions Dirichlet on the boundary. Equation
(1.1) can be rewritten as follows

ε
∂2u

∂t2
+
∂u

∂t
−∆u = −f(u(t)) +

∂α(t)

∂t
= hu,α(t), ζu|t=0 = ζ0, u(t)|∂Ω = 0. (5.6)

Owing to the proposition A.2 (see [7]) found from equation (5.6), we have

‖(ζu(t)‖2ε(ε) +

∫ t

0

‖∂u(τ)

∂t
‖2e−β(t−τ)dτ

≤ Ce−βt(‖(ζu(0)‖2ε(ε) + ‖hu,α(0)‖2H−1)

+C

∫ t

0

(‖hu,α(τ)‖2H−1 + ‖∂hu,α(τ)

∂t
‖2H−1)e−β(t−τ)dτ, (5.7)

where the positive constants β and C are independent of ε.

To estimate the last term of the second member about (5.7), we first find the estimate of the
term ‖hu,α(τ)‖2H−1 + ‖ ∂hu,α(τ)

∂t
‖2H−1 . We have

‖hu,α(τ)‖2H−1 + ‖∂hu,α(τ)

∂t
‖2H−1 ≤ ‖f(u(τ))‖2H−1 + ‖∂α(τ)

∂t
‖2H−1 + ‖f ′(u(τ))

∂u(τ)

∂t
‖2H−1

+‖∂
2α(τ)

∂t2
‖2H−1 . (5.8)

The estimate (5.1) gives uniform estimates of ‖u‖H1 , ‖α‖H1 and ‖∂α
∂t
‖ independent of ε, these

imply

‖u‖2H−1 ≤ C‖u‖2H1 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βt + C (5.9)

‖∂α
∂t
‖2H−1 ≤ C‖∂α

∂t
‖2 ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C, (5.10)

where the positive constants β, C and the monotonic function Q are independent of ε.

We get thanks to the hypothesis (1.8),

|f(u)| ≤ c2

(∫ |u|
0

|s|2pds+

∫ |u|
0

ds

)
= C

(
|u|2p+1 + |u|

)
, (5.11)

the same hypothesis implies for all w ∈ H1
0 (Ω),

| (f(u), w) | ≤ C

(∫
Ω

|u|2p|u||w|dx+

∫
Ω

|u||w|dx
)

≤ C

(∫
Ω

|u|2p|u||w|dx+ ‖u‖H1‖w‖H1

)
.
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Furthermore, if n = 2 and p > 0, we have, owing to Hölder’s inequality and the continuous embeding
of H1(Ω) in L4(Ω) and in L4p(Ω),

| (f(u), w) | ≤ C
(
‖u‖2p

L4p‖u‖L4‖w‖L4 + ‖u‖H1‖w‖H1

)
≤ C(‖u‖2p

H1 + 1)‖u‖H1‖w‖H1 , (5.12)

and if n = 3 and p ≤ 1, we have, using Hölder’s inequality (for p = 1) and the continuous embeding
of H1(Ω) in L4(Ω),

| (f(u), w) | ≤ C
(
‖u‖2L4‖u‖L4‖w‖L4 + ‖u‖H1‖w‖H1

)
≤ C(‖u‖2H1 + 1)‖u‖H1‖w‖H1 . (5.13)

The estimates (5.12) and (5.13) allow to deduce

‖f(u)‖2H−1 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βt + C, (5.14)

where the positive constants β, C and the monotonic function Q are independent of ε.

We have thanks to the hypothesis (1.8) and for all w ∈ H1
0 (Ω), the following estimate

|(f ′(u)
∂u

∂t
, w)| ≤ c2

(∫
Ω

|u|2p|∂u
∂t
||w|dx+

∫
Ω

|∂u
∂t
||w|dx

)
≤ C

(∫
Ω

|u|2p|∂u
∂t
||w|dx+ ‖∂u

∂t
‖‖w‖H1

)
.

If n = 2 and p > 0, we find, using Hölder’s inequality, and the continuous embeding of H1(Ω) in
L2(2p+1)(Ω),

|(f ′(u)
∂u

∂t
, w)| ≤ C

(
‖u‖2p

L2(2p+1)‖
∂u

∂t
‖‖w‖L2(2p+1) + ‖∂u

∂t
‖‖w‖H1

)
≤ C(‖u‖2p

H1 + 1)‖∂u
∂t
‖‖w‖H1 . (5.15)

If n = 3 and p ≤ 1, we obtain owing to Hölder’s inequality (for p = 1) and the continuous embeding
of H1(Ω) in L6(Ω),

|(f ′(u)
∂u

∂t
, w)| ≤ C

(
‖u‖2L6‖

∂u

∂t
‖‖w‖L6 + ‖∂u

∂t
‖‖w‖H1

)
≤ C(‖u‖2H1 + 1)‖∂u

∂t
‖‖w‖H1 . (5.16)

The estimates (5.15) and (5.16) allow to deduce

‖f ′(u)
∂u

∂t
‖2H−1 ≤ C‖

∂u

∂t
‖2, (5.17)

where the positive constant C is independente of ε.

Equation (1.2) implies

∂2α

∂t2
= −∂α

∂t
+ ∆

∂α

∂t
+ ∆α− u− ∂u

∂t
.

We deduce from the above equation, estimates (5.9), (5.10) and from the uniform estimates of
‖α‖2H1 , ‖u‖2H1 and ‖ ∂α

∂t
‖2H1 , the following estimate

‖∂
2α

∂t2
‖2H−1 ≤ C

(
‖∂α
∂t
‖2H−1 + ‖∂α

∂t
‖2H1 + ‖α‖2H1 + ‖u‖2H−1 + ‖∂u

∂t
‖2H−1

)
≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C

(
1 + ‖∂u

∂t
‖2 + ‖∂α

∂t
‖2H1

)
. (5.18)
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The estimates (5.10), (5.14), (5.17) and (5.18) inserted into (5.8) allow to obtain

‖hu,α(τ)‖2H−1 + ‖∂hu,α(τ)

∂t
‖2H−1 ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt

+ C

(
1 + ‖∂u

∂t
‖2 + ‖∂α

∂t
‖2H1

)
, (5.19)

where the positive constants β, C and the monotonic function Q are independente of ε.

We insert (5.19) into (5.7). We find from the estimate (5.1)

‖(ζu(t)‖2ε(ε) +

∫ t

0

‖∂u(τ)

∂t
‖2e−β(t−τ)dτ

≤ Ce−βt + C

(∫ t

0

(
Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0) + 1

)
e−β(t−τ)dτ

)
+ C

∫ t

0

(
‖∂u
∂t
‖2 + ‖∂α

∂t
‖2H1

)
e−β(t−τ)dτ

≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βt + C, (5.20)

where the positive constants β, C and the monotonic function Q are independent of ε, but C
depends on the initial conditions.

Combining (5.1) and (5.20), we have

‖(ζu(t), α(t),
∂α(t)

∂t
)‖2Φ0

+

∫ t

0

(‖∂u(τ)

∂t
‖2 + ‖∂α(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C. (5.21)

�

Corollary 5.1. The semigroup of operators Sε(t), t ≥ 0 associated to the problem (1.1)-(1.4) is
dissipative in Φ0, that’s to say, it possesses a bounded absorbing set in Φ0.

This corollary is a straightforward consequence of Theorem 5.1.

We denote BR0(ε) =
{

(ζu, α,
∂α
∂t

) ∈ Φ0/‖(ζu, α, ∂α∂t )‖Φ0 ≤ R0

}
where R0 is large enough, a bounded

absorbing set for the semigroup Sε(t) in Φ0.

Lemma 5.2. Assume that the hypotheses of Theorem 3.2 hold, ε ≤ 1, and (u, α) the solution of
problem (1.1)-(1.4) such that (ζu(0), α(0), ∂α(0)

∂t
) ∈ BR0(ε) ∩ Φ1. Then the solution (u, α) satisfies

the following estimate

‖u(t)‖2H2 + ε‖∂u(t)

∂t
‖2H1 + ‖α(t)‖2H2 + ‖∂α(t)

∂t
‖2H1

+

∫ t

0

(‖∂u(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ1)e−βt + C, (5.22)

where the positive constants β, C and the monotonic function Q are independent of ε.

Proof. We multiply (1.1) by −∆u and we get, integrating over Ω

d

dt

(
‖u‖2H1 + 2ε(∇∂u

∂t
,∇u)

)
+ 2‖u‖2H2 = 2 (f(u),∆u) + 2(

∂α

∂t
,∆u) + 2ε‖∂u

∂t
‖2H1 , (5.23)

8
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The estimate (5.11) allows to obtain owing to the Hölder’s inequality, the continuous embeding of
H1(Ω) in L2(2p+1)(Ω) and if n = 2 and p > 0, the following estimate

(f(u),∆u) ≤ C
(
‖u‖2p

L2(2p+1)‖u‖L2(2p+1)‖∆u‖+ ‖u‖‖∆u‖
)

≤ C(‖u‖2p
H1 + 1)‖u‖H1‖u‖H2 , (5.24)

where C > 0 is independent of ε. Moreover if n = 3, p ≤ 1 (for p = 1) and taking into account the
continuous embeding of H1(Ω) in L6(Ω), we obtain

(f(u),∆u) ≤ C‖u‖3L6‖∆u‖+ C‖u‖‖∆u‖ ≤ C(‖u‖2H1 + 1)‖u‖H1‖u‖H2 , (5.25)

where C > 0 is independent of ε.

We deduce thanks to the estimates (5.24) and (5.25), applying young’s inequality and considering
(ζu, α,

∂α
∂t

) ∈ BR0(ε)

(f(u),∆u) ≤ C(‖u‖q
H1 + 1)‖u‖H1‖u‖H2 ≤ C‖u‖H1‖u‖H2 ≤ 1

2
‖u‖2H2 + C, (5.26)

where C > 0 is independent of ε.

We insert (5.26) into (5.23). We get thanks to (5.1), the following estimate

d

dt

(
‖u‖2H1 + 2ε(∇∂u

∂t
,∇u)

)
+ ‖u‖2H2 ≤ 2cp‖

∂α

∂t
‖2H1 + 2‖∂u

∂t
‖2H1 + C. (5.27)

where C > 0 is independent of ε.

We multiply (1.2) by −∆α and we get, integrating over Ω

d

dt

(
‖α‖2H1 + ‖α‖2H2 + 2(∇∂α

∂t
,∇α)

)
+ ‖α‖2H2 ≤ 2cp‖u‖2H1 + 2cp‖

∂u

∂t
‖2H1 + 2‖∂α

∂t
‖2H1

≤ C′′‖u‖2H2 + 2cp‖
∂u

∂t
‖2H1 + 2‖∂α

∂t
‖2H1 (5.28)

We multiply (1.1) by −∆ ∂u
∂t

and (1.2) by −∆ ∂α
∂t

and we integrate over Ω. We obtain, summing the
two defferential resulting equalities

d

dt

(
‖u‖2H2 + ε‖∂u

∂t
‖2H1 + ‖α‖2H2 + ‖∂α

∂t
‖2H1

)
+ 2‖∂u

∂t
‖2H1 + 2‖∂α

∂t
‖2H1 + 2‖∂α

∂t
‖2H2

≤ 2|(f ′(u)∇u,∇∂u
∂t

)|+ 2|(∇u,∇∂α
∂t

)|. (5.29)

The assumption (1.8) allows to find owing to the Hölder’s inequality, considering the continuous
embeding of H1(Ω) in L2(2p+1)(Ω) and if n = 2 and p > 0, the following estimate

|(f ′(u)∇u,∇∂u
∂t

)| ≤ C‖u‖2p
L2(2p+1)‖∇u‖L2(2p+1)‖∇

∂u

∂t
‖+ C‖∇u‖‖∇∂u

∂t
‖

≤ C‖u‖2p
H1(‖u‖H2 + 1)‖∂u

∂t
‖H1 , (5.30)

where C > 0 is independent of ε. Moreover if n = 3, p ≤ 1, taking into account the continuous
embeding of H1(Ω) in L6(Ω) (for p = 1), we obtain

|(f ′(u)∇u,∇∂u
∂t

)| ≤ C‖u‖2L6‖∇u‖L6‖∇∂u
∂t
‖+ C‖∇u‖‖∇∂u

∂t
‖

≤ C‖u‖2H1(‖u‖H2 + 1)‖∂u
∂t
‖H1 , (5.31)

9
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where C > 0 is independent of ε.

The estimates (5.30) and (5.31) allow to obtain

|(f ′(u)∇u,∇∂u
∂t

)| ≤ C‖u‖q
H1(‖u‖H2 + 1)‖∂u

∂t
‖H1 ≤ C(‖u‖H2 + 1)‖∂u

∂t
‖H1 , (5.32)

where C > 0 is independent of ε.

We insert (5.32) into (5.29). We find

d

dt

(
‖u‖2H2 + ε‖∂u

∂t
‖2H1 + ‖α‖2H2 + ‖∂α

∂t
‖2H1

)
+ ‖∂u

∂t
‖2H1 + ‖∂α

∂t
‖2H1 ≤ C′′′‖u‖2H2 + C, (5.33)

where the positive constants C′′′ and C are independent of ε.

Summing γ4(5.27), γ5(5.28), γ6(5.33) where γ4, γ5 and γ6 > 0 are such that

γ4 − C′′γ4 − 2C′′′γ6 > 0

γ6 − 2γ4 − 2cpγ5 > 0,

γ6 − 2cpγ4 − 2γ5 > 0

we have

d

dt
E4 + C1‖u‖2H2 + C2‖

∂u

∂t
‖2H1 + C3‖α‖2H2 + C4‖

∂α

∂t
‖2H1 ≤ C, Ci, C > 0 (5.34)

where

E4 = γ4(‖α‖2H1 + ‖α‖2H2 + 2(∇∂α
∂t
,∇α)) + γ5(‖u‖2H1 + 2ε(∇∂u

∂t
,∇u))

+γ6(‖u‖2H2 + ε‖∂u
∂t
‖2H1 + ‖α‖2H2 + ‖∂α

∂t
‖2H1),

for sufficiently small values of γ4 > 0 and γ5 > 0, there exists C > 0 independent of ε such that

C−1(‖u(t)‖2H2 + ε‖∂u(t)

∂t
‖2H1 + ‖α(t)‖2H2 + ‖∂α(t)

∂t
‖2H1) ≤ E4(t)

≤ C(‖u(t)‖2H2 + ε‖∂u(t)

∂t
‖2H1 + ‖α(t)‖2H2 + ‖∂α(t)

∂t
‖2H1).

We deduce from the above astimate and (5.34) the following estimate

d

dt
E4 + βE4 + C‖∂u

∂t
‖2H1 ≤ C,

where β and C are positive constants independent of ε.

Applying Gronwall’s lemma, we obtain

‖u(t)‖2H2 + ε‖∂u(t)

∂t
‖2H1 + ‖α(t)‖2H2 + ‖∂α(t)

∂t
‖2H1

+

∫ t

0

‖∂u(τ)

∂t
‖2H1e

−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ1)e−βt + C,

where the positve constants β, C and the monotonic function Q are independent of ε. Then we
have uniform estimates of ‖u‖H2 , ‖α‖H2 and ‖ ∂α

∂t
‖H1 independent of ε. �

10
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Theorem 5.2. Assume that the hypotheses of Theorem 3.2 hold, ε ≤ 1, and (u, α) the solution of
problem (1.1)-(1.4) such that (ζu(0), α(0), ∂α(0)

∂t
) ∈ BR0(ε) ∩ Φ1. Then, the solution (u, α) satisfies

the following estimate

‖(ζu(t), α(t),
∂α(t)

∂t
)‖2Φ1

+

∫ t

0

‖∂u(τ)

∂t
‖2H1e

−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ1)e−βt + C,

where the positive constants β, C and the monotonic function Q are independent of ε.

Proof. We first determine the uniform energy estimate of the perturbed damped hyperbolic
equation (1.1) with initial condtions and homogenous conditions Dirichlet on the boundary. Equation
(1.1) can be rewritten as follows

ε
∂2u

∂t2
+
∂u

∂t
−∆u = −f(u(t)) +

∂α(t)

∂t
= hu,α(t), ζu|t=0 = ζ0, u(t)|∂Ω = 0. (5.35)

Owing to the proposition A.1 (see [7]) found from equation (5.35), we have

‖ζu(t)‖2ε1(ε) +

∫ t

0

‖∂u(τ)

∂t
‖2H1e

−β(t−τ)dτ

≤ Ce−βt(‖(ζu(0)‖2ε1(ε) + ‖hu,α(0)‖2)

+ C

∫ t

0

(‖hu,α(τ)‖2H1 + ‖∂hu,α(τ)

∂t
‖2H−1)e−β(t−τ)dτ, (5.36)

where the positive constants β and C are independent of ε.

To estimate the last term of the second member, we first find the estimate of ‖hu,α(τ)‖2H1 +

‖ ∂hu,α(τ)

∂t
‖2H−1 . We have

‖hu,α(τ)‖2H1 + ‖∂hu,α(τ)

∂t
‖2H−1 ≤ ‖f(u(τ))‖2H1 + ‖∂α(τ)

∂t
‖2H1

+‖f ′(u(τ))
∂u(τ)

∂t
‖2H−1 + ‖∂

2α(τ)

∂t2
‖2H−1 . (5.37)

We also have thanks to the assumption (1.8),

‖f(u)‖2H1 = ‖∇f(u)‖2 = ‖f ′(u)∇u‖2 ≤ c2

(∫
Ω

|u|4p|∇u|2dx+

∫
Ω

|∇u|2dx
)

≤ c2

(∫
Ω

|u|4p|∇u|2dx+ ‖u‖2H1

)
. (5.38)

If n = 2 and p > 0, we find, using the Hölder’s inequality and owing to the continuous embeding of
H1(Ω) in L6p(Ω) and in L6(Ω), the estimate

‖f(u)‖2H1 ≤ c2‖u‖4pL6p‖∇u‖2L6 + c2‖u‖2H1 ≤ C‖u‖4pH1‖u‖2H2 + c2‖u‖2H1 . (5.39)

If n = 3 and p ≤ 1, we find owing to Hölder’s inequality (for p = 1) and considering the continuous
embeding of H1(Ω) in L6(Ω), the estimate

‖f(u)‖2H1 ≤ c2‖u‖4L6‖∇u‖2L6 + c2‖u‖2H1 ≤ C‖u‖4H1‖u‖2H2 + c2‖u‖2H1 . (5.40)

We deduce the below astimate, thanks to the estimates (5.39) and (5.40), considering (ζu, α,
∂α
∂t

) ∈
BR0(ε) and the uniform estimate of ‖u‖H2

‖f(u)‖2H1 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ1)e−βt + C. (5.41)

11
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Equation (1.2) implies

∂2α

∂t2
= −∂α

∂t
+ ∆

∂α

∂t
+ ∆α− u− ∂u

∂t
.

Thanks to the above equation and the uniform estimates of ‖u‖H2 , ‖α‖H2 and ‖ ∂α
∂t
‖H1 , we deduce

the following estimate

‖∂
2α

∂t2
‖2H−1 ≤ C

(
‖∂α
∂t
‖2H−1 + ‖∂α

∂t
‖2H1 + ‖α‖2H1 + ‖u‖2H−1 + ‖∂u

∂t
‖2H−1

)
≤ C

(
‖∂α
∂t
‖2H1 + ‖α‖2H2 + ‖u‖2H2 + ‖∂u

∂t
‖2H1

)
≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ1)e−βt + C(1 + ‖∂u

∂t
‖H1). (5.42)

The estimates (5.17), (5.41) and (5.42) inserted into (5.37) allow to obtain

‖hu,α(τ)‖2H1 + ‖
∂hu,α(τ)

∂t
‖2H−1 ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ1)e−βt + C(1 + ‖∂u

∂t
‖H1). (5.43)

We insert (5.43) into (5.36). we find from the estimate (5.22)

‖(ζu(t)‖2ε1(ε) +

∫ t

0

‖∂u(τ)

∂t
‖2H1e

−β(t−τ)dτ

≤ Ce−βt + C

(∫ t

0

(
Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ1) + 1

)
e−β(t−τ)dτ

)
+ C

∫ t

0

‖∂u(τ)

∂t
‖2H1e

−β(t−τ)dτ

≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ1)e−βt + C, (5.44)

where the positive constants β, C and the monotonic function Q are independent of ε, but C
depends on the initial conditions.

Combining (5.22) and (5.44) we have

‖(ζu(t), α(t),
∂α(t)

∂t
)‖2Φ1

+

∫ t

0

(‖∂u(τ)

∂t
‖2H1 + ‖∂α(τ)

∂t
‖2H2)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ1)e−βt + C, (5.45)

where the positive constants β, C and the monotonic function Q are independent of ε. �

Corollary 5.2. The semigroup of operator Sε(t) associated to the system (1.1)-(1.2) is dissipative
in Φ1, ie, it possesses a bounded absorbing set in Φ1.

This corollary is a straightfoward consequence of Theorem 5.2.

6 Existence of Global Attractor
Theorem 6.1. Assume that the hypotheses of Theorem 5.2 hold. Then the semigroup Sε(t), t ≥ 0
defined from Φ0 in Φ0, and associated to the problem (1.1)-(1.4) possesses a global attractor Aε
which is compact in Φ0, bounded and connexe in Φ1.
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Proof. We have already proved the dissipativity and regularity of the semigroup {Sε(t)}t≥0

associated to the problem (1.1)-(1.4). It remains to split the semigroup Sε(t) as the sum of two
continuous operators S1

ε (t) and S2
ε (t), such that the solution (u, α) with initial condition belonging

to BR0 ∩ Φ1 can be write as follows

(u, α) = (ν, η) + (ω, ξ) with

S1
ε (t)(ζu(0), α(0),

∂α(0)

∂t
) = (ζν(t), η(t),

∂η(t)

∂t
),

S2
ε (t)(0, 0, 0) = (ζω(t), ξ(t),

∂ξ(t)

∂t
),

where S1
ε (t) is the solving operator associated to the linear hyperbolic system

ε
∂2ν

∂t2
+

∂ν

∂t
− ∆ν =

∂η

∂t
, (6.1)

∂2η

∂t2
+

∂η

∂t
− ∆

∂η

∂t
−∆η = − ν − ∂ν

∂t
, (6.2)

ν|∂Ω = η|∂Ω = 0,

ν|t=0 = u0,
∂ν

∂t
|t=0 = u1,

η|t=0 = α0,
∂η

∂t
|t=0 = α1,

S2
ε (t) is the solving operator associated to the nonlinear hyperbolic system

ε
∂2ω

∂t2
+

∂ω

∂t
− ∆ω + f(u) =

∂ξ

∂t
, (6.3)

∂2ξ

∂t2
+

∂ξ

∂t
− ∆

∂ξ

∂t
−∆ξ = − ω − ∂ω

∂t
, (6.4)

ω|∂Ω = ξ|∂Ω = 0,

ω|t=0 =
∂ω

∂t
|t=0 = ξ|t=0 =

∂ξ

∂t
|t=0 = 0,

and to show that the operator S1
ε (t) uniformly converges to 0 over all bounded subset of Φ0 and

S2
ε (t) is regularizing on Φ1, when the time t tends to the infinity.

We first prove that the operator S1
ε (t) uniformly converges to 0 over all bounded subset of Φ0, when

the time t tends to the infinity.

We multiply (6.1) by ν and (6.2) by η and we get, integrating over Ω.

d

dt

(
‖ν‖2 + 2ε(

∂ν

∂t
, ν)

)
+ ‖ν‖2H1 ≤ cp‖

∂η

∂t
‖2 + 2‖∂ν

∂t
‖2, (6.5)

d

dt

(
‖η‖2 + ‖η‖2H1 + 2(

∂η

∂t
, η)

)
+ ‖η‖2H1 ≤ 2c2p‖ν‖2H1 + 2cp‖

∂ν

∂t
‖2 + 2‖∂η

∂t
‖2. (6.6)

We multiply (6.1) by ∂ν
∂t

and (6.2) by ∂η
∂t

and we obtain, integrating over Ω, the two following
equalities

d

dt

(
‖ν‖2H1 + ε‖∂ν

∂t
‖2
)

+ 2‖∂ν
∂t
‖2 = 2(

∂η

∂t
,
∂ν

∂t
),

d

dt

(
‖η‖2H1 + ‖∂η

∂t
‖2
)

+ 2‖∂η
∂t
‖2 + 2‖∂η

∂t
‖2H1 = −2(ν,

∂η

∂t
)− 2(

∂ν

∂t
,
∂η

∂t
),

13
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the sum of the above equalities allow to obtain the following estimate

d

dt

(
‖ν‖2H1 + ε‖∂ν

∂t
‖2 + ‖η‖2H1 + ‖∂η

∂t
‖2
)

+ 2‖∂ν
∂t
‖2 + ‖∂η

∂t
‖2 + 2‖∂η

∂t
‖2H1 ≤ cp‖ν‖2H1 . (6.7)

Summing γ8(6.5), γ9(6.6) and γ10(6.7) where γ8, γ9 and γ10 > 0 are such that

γ8 − 2c2pγ9 > 0

γ10 − cP γ9 − γ8 > 0,

γ10 − cpγ8 − 2γ9 > 0

we get

d

dt
E5 + C1‖ν‖2H1 + C2‖

∂ν

∂t
‖2 + C3‖η‖2H1 + C4‖

∂η

∂t
‖2 + C5‖

∂η

∂t
‖2H1 ≤ 0, Ci > 0 (6.8)

where

E5 = γ8(‖ν‖2 + 2ε(
∂ν

∂t
, ν)) + γ9(‖η‖2 + ‖η‖2H1 + 2(

∂η

∂t
, η))

+γ10(‖ν‖2H1 + ε‖∂ν
∂t
‖2 + ‖η‖2H1 + ‖∂η

∂t
‖2).

Moreover for sufficiently small values of γ8 and γ9 > 0, there exists C > 0 independent of ε such
that

C−1(‖ν(t)‖2H1 + ε‖∂ν(t)

∂t
‖2 + ‖η(t)‖2H1 + ‖∂η(t)

∂t
‖2) ≤ E5(t)

≤ C(‖ν(t)‖2H1 + ε‖∂ν(t)

∂t
‖2 + ‖η(t)‖2H1 + ‖∂η(t)

∂t
‖2).

We have the bellow estimate, thanks to (6.8) and the above estimate

d

dt
E5 + βE5 + C1‖

∂ν

∂t
‖2 + C2‖

∂η

∂t
‖2H1 ≤ 0, (6.9)

where the positive constants β, C1 and C2 are independent of ε.

Applying Gronwall’s lemma, we get

‖ν(t)‖2H1 + ε‖∂ν(t)

∂t
‖2 + ‖η(t)‖2H1 + ‖∂η(t)

∂t
‖2

+

∫ t

0

(‖∂ν(τ)

∂t
‖2 + ‖∂η(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt, (6.10)

where the positive constants β, C and the monotonic function Q are independent of ε.

The above estimate allows to obtain the uniform estimates of ‖ν‖H1 , ‖η‖H1 and ‖ ∂η
∂t
‖ independent

of ε.

The uniform energy estimate of the perturbed damped hyperbolic equation (6.1) with initial conditions
and homogenous conditions Dirichlet on the boundary, is determined as follows.

We have thanks to the equation (6.1),

ε
∂2ν

∂t2
+
∂ν

∂t
−∆ν =

∂η(t)

∂t
= hη(t), ζν |t=0 = ζ0, ν(t)|∂Ω = 0. (6.11)
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The proposition A.2 (see [7]) allows to find from equation (6.11), the estimate

‖(ζν(t)‖2ε(ε) +

∫ t

0

‖∂ν(τ)

∂t
‖2e−β(t−τ)dτ

≤ Ce−βt(‖(ζν(0)‖2ε(ε) + ‖hη(0)‖2H−1) + C

∫ t

0

(‖hη(τ)‖2H−1 + ‖∂hη(τ)

∂t
‖2H−1)e−β(t−τ)dτ, (6.12)

where the positive constants C and β are independent of ε.

We first find the estimate of ‖hη(τ)‖2H−1 + ‖ ∂hη(τ)

∂t
‖2H−1 . We have

‖hη(τ)‖2H−1 + ‖∂hη(τ)

∂t
‖2H−1 ≤ ‖

∂η(τ)

∂t
‖2H−1 + ‖∂

2η(τ)

∂t2
‖2H−1 (6.13)

The estimate (6.10) gives uniform estimates of ‖ν‖H1 , ‖η‖H1 and ‖∂η
∂t
‖ independent of ε, these

imply

‖ν‖2H−1 ≤ C‖ν‖2H1 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βt (6.14)

‖∂η
∂t
‖2H−1 ≤ C‖∂η

∂t
‖2 ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt, (6.15)

where the positive constants β, C and the monotonic function Q are independent of ε.

Equation (6.2) implies

∂2η

∂t2
= −∂η

∂t
+ ∆

∂η

∂t
+ ∆η − ν − ∂ν

∂t
.

We deduce owing to the above equation, estimates (6.14), (6.15) and the uniform estimate of
‖η‖H1 ,the following estimate

‖∂
2η

∂t2
‖2H−1 ≤ C

(
‖∂η
∂t
‖2H−1 + ‖∂η

∂t
‖2H1 + ‖η‖2H1 + ‖ν‖2H−1 + ‖∂ν

∂t
‖2H−1

)
≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt + C

(
‖∂ν
∂t
‖2 + ‖∂η

∂t
‖2H1

)
. (6.16)

The estimates (6.15) and (6.16) inserted into (6.13) allow to obtain

‖hη(τ)‖2H−1 + ‖∂hη(τ)

∂t
‖2H−1 ≤ Q(‖(ζu(0), α(0),

∂η(0)

∂t
)‖Φ0)e−βt + C

(
‖∂ν
∂t
‖2 + ‖∂η

∂t
‖2H1

)
. (6.17)

We insert (6.17) into (6.12). We find from the estimate (6.10)

‖(ζν(t)‖2ε(ε) +

∫ t

0

‖∂ν(τ)

∂t
‖2e−β(t−τ)dτ ≤ Ce−βt +Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)te−βt

+

∫ t

0

(
‖∂ν(τ)

∂t
‖2 + ‖∂η(τ)

∂t
‖2H1

)
e−β(t−τ)dτ

≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βt, (6.18)

Combining (6.18) and (6.10) we have

‖(ζν(t), η(t),
∂η(t)

∂t
)‖2Φ0

+

∫ t

0

(‖∂ν(τ)

∂t
‖2 + ‖∂η(τ)

∂t
‖2H1)e−β(t−τ)dτ ≤ Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βt.
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So the operator S1
ε (t) uniformly converges to 0 over all bounded subset of Φ0 when t tends to the

infinity.

It remain to prove that S2
ε (t) is regularizing on Φ1, when t tends to the infinity.

We multiply (6.3) by ω and (6.4) by ξ and we have, integrating over Ω

d

dt

(
‖ω‖2 + 2ε(ω ,

∂ω

∂t
)

)
+ ‖ω‖2H1 ≤ 2cp‖f(u)‖2 + 2c2p‖

∂ξ

∂t
‖2H1 + 2cp‖

∂ω

∂t
‖2H1 , (6.19)

d

dt

(
‖ξ‖2 + ‖ξ‖2H1 + 2(ξ ,

∂ξ

∂t
)

)
+ ‖ξ‖2H1 ≤ 2c2p‖ω‖2H1 + 2c2p‖

∂ω

∂t
‖2H1 + 2cp‖

∂ξ

∂t
‖2H1 . (6.20)

We multiply (6.3) by −∆ ∂ω
∂t

and (6.4) by −∆ ∂ξ
∂t

and we get, integrating over Ω

d

dt

(
‖ω‖2H2 + ε‖∂ω

∂t
‖2H1

)
+ 2‖∂ω

∂t
‖2H1 = −2(f ′(u)∇u , ∇∂ω

∂t
) + 2(∇∂ξ

∂t
, ∇∂ω

∂t
),

d

dt

(
‖ξ‖2H2 + ‖∂ξ

∂t
‖2H1

)
+ 2‖∂ξ

∂t
‖2H1 + 2‖∂ξ

∂t
‖2H2 = −2(∇ω , ∇∂ξ

∂t
)− 2(∇∂ω

∂t
, ∇∂ξ

∂t
).

The sum of the above equalities allows to find the following estimate

d

dt

(
‖ω‖2H2 + ε‖∂ω

∂t
‖2H1 + ‖ξ‖2H2 + ‖∂ξ

∂t
‖2H1

)
+ ‖∂ω

∂t
‖2H1 + ‖∂ξ

∂t
‖2H1 + 2‖∂ξ

∂t
‖2H2

≤ ‖f ′(u)∇u‖2 + ‖ω‖2H1 . (6.21)

We multiply (6.3) by ∂2ω
∂t2

and We get, integrating over Ω, the following estimate

d

dt

(
‖∂ω
∂t
‖2 + 2(∇ω , ∇∂ω

∂t
)

)
+ ε‖∂

2ω

∂t2
‖2 ≤ C1‖f(u)‖2 + C2‖

∂ξ

∂t
‖2H1 + 2‖∂ω

∂t
‖2H1 . (6.22)

Summing γ11(6.19), γ12(6.20), γ13(6.21) and γ14(6.22), where γ11, γ12, γ13 and γ14 > 0 are such
that

γ11 − 2c2pγ12 − γ13 > 0

γ13 − 2cpγ11 − 2c2pγ12 − 2γ14 > 0,

γ13 − 2c2pγ11 − 2cpγ12 − C2γ14 > 0

we find

d

dt
E6 + C3‖ω‖2H1 + C4‖

∂ω

∂t
‖2H1 + C5‖ξ‖2H1 + C6‖

∂ξ

∂t
‖2H1 + C7‖

∂ξ

∂t
‖2H2 + C8‖

∂2ω

∂t2
‖2

≤ ‖f ′(u)∇u‖2 + C1‖f(u)‖2,

we deduce the estimate

d

dt
E6 ≤ C1‖f ′(u)∇u‖2 + C2‖f(u)‖2, (6.23)

where

E6 = γ11

(
‖ω‖2 + 2ε(ω ,

∂ω

∂t
)

)
+ γ12

(
‖ξ‖2 + ‖ξ‖2H1 + 2(ξ ,

∂ξ

∂t
)

)
+γ13

(
‖ω‖2H2 + ε‖∂ω

∂t
‖2H1 + ‖ξ‖2H2 + ‖∂ξ

∂t
‖2H1

)
+ γ14

(
‖∂ω
∂t
‖2 + 2(∇ω , ∇∂ω

∂t
)

)
,
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For sufficiently small values of γ11, γ12 and γ14>0, there exists C > 0 independent of ε such that

C‖(ζω(t), ξ(t),
∂ξ(t)

∂t
)‖2Φ1

≤ E6(t), (6.24)

The assumption (1.8) allows to find owing to (u, α) ∈ BR0 ∩ Φ1 that’s to say u ∈ H2(Ω)) with
H2(Ω) ⊂ L∞(Ω), the estimates

‖f ′(u)∇u‖2 ≤ c2

∫
Ω

|u|4p|∇u|2dx+ c2

∫
Ω

|∇u|2dx ≤ C
(
‖u‖4pL∞(Ω)‖u‖

2
H1 + ‖u‖2H1

)
≤ C‖u‖2H1

‖f(u)‖2 ≤ C

∫
Ω

(
|u|4p|u|2 + |u|2

)
dx ≤ C

(
‖u‖4pL∞(Ω)‖u‖

2 + ‖u‖2
)
≤ C‖u‖2H1 .

Thanks to the estimate (5.1), the above estimates can be write as follows

‖f ′(u)∇u‖2 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βτ + C (6.25)

‖f(u)‖2 ≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)e−βτ + C, (6.26)

where the positive constants β, C and the monotonic function Q are independent of ε. After
inserting (6.25) and (6.26) into (6.23), we find

d

dt
E6 ≤ Q(‖(ζu(0), α(0), ∂α(0)

∂t
)‖Φ0)e−βτ + C, (6.27)

We obtain, integrating (6.27) from 0 to t ∈ [0 , T ] and combining with (6.24),

‖(ζω(t), ξ(t),
∂ξ(t)

∂t
)‖2Φ1

≤ C

∫ t

0

(
Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0)e−βτ + C

)
dτ

≤
(

1− e−βt
)
Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0) + Ct

≤ Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0) + CT

≤ (1 + T )Q(‖(ζu(0), α(0),
∂α(0)

∂t
)‖Φ0)

‖(ζω(t), ξ(t),
∂ξ(t)

∂t
)‖2Φ1

≤
(
1 + T 2)Q(‖(ζu(0), α(0),

∂α(0)

∂t
)‖Φ0). (6.28)

The estimate (6.28) allows to assert that the operator Sε(t) is regularizing in Φ1, and there exists
a bounded and attracting compact set in Φ1. �

7 Conclusion
The works contained in this manuscript about dynamic system, are very interesting to explain the
context of phase transition phenomena, when the solution of the system exists. The existence and
unicity of global attractor, associated to the problem (1.1)−(1.4) that we have proved in this paper,
allow to assert that the solution of the problem (1.1) − (1.4) studied in [4], belongs to the subset
called global attractor, from a certain time.
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