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Abstract
We propose the use of a second surface mirror as a displacement plate-beamsplitter to provide
significant simplification and cost reduction of time-of-flight anemometry (ToFA), without
sacrificing precision and accuracy. These benefits are most pronounced for long-range
applications. Our method’s principle benefits are due to the few and simple components it
requires as well as low sensitivity to both temperature effects and light source incoherence. We
found that precise and accurate results are possible using a common consumer mirror as the
main optical element and an inexpensive diode laser as the light source, which could broaden
access to laser anemometry and make many industry applications economically feasible. The
nature of the design also permits an increase in range for a given laser power since the method
can utilize the entire optical area of the focusing lens/mirror independent of other design
considerations and the cost of a flat second-surface mirror is usually negligible. To characterize
the performance of this method, we develop a Cramer–Rao bound (CRB) for a general class of
ToFA’s with multiple Gaussian beams under signal-independent Gaussian white noise. For a
given measurement volume, the lowest velocity uncertainty is achieved by creating a standard
two-sheet geometry: power-matching the first two beams by adjusting the beamsplitter and
blocking the rest of the beams is optimal. However, keeping the higher order beams permits
determination of flow direction. Conditions to achieve beam power-matching are given. An
anemometer is built using a diode laser with 12mw 405 nm beam using a total of just three
transmitting optical components. Our setup has an accuracy of 99.1%. The worst-case precision
of 96.7% nearly achieves the CRB, although optimizing the setup more can lower the bound,
and therefore allow increase in the performance by an order of magnitude or more.

Keywords: laser transit anemometer, Cramer–Rao bound, laser velocimetry, plate beamsplitter,
achromatic, geometrical optics

1. Introduction

Laser anemometers are a good option for non-intrusive,
spatial-temporally resolved measurements in fluid flows.
Many different methods of laser anemometry exist, each with
their own advantages and disadvantages, but they all have

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

the same basic components and work on a similar principle.
Excluding Doppler wind LIDAR and a few specialized tech-
niques, laser anemometry infers the velocity of the fluid in
the component normal to the beam pattern indirectly by meas-
uring that velocity component of small tracer particle(s) that
get carried passively by flow. To detect the velocity of a
single particle it is necessary to first generate a precise beam
pattern for the particle to pass through using a laser and
various optical manipulations. The intensity of the scattered
light from the particle will fluctuate in time according to
the beam pattern, with the frequency of this fluctuation dir-
ectly proportional to the particle velocity. The scattered light
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is collected, transduced, and then conditioned by a detector.
Finally the signal is digitized and analyzed to give a single
velocity reading. By the time the light is reflected by a particle
it already encodes the velocity of the particle. As a result, much
of the accuracy and repeatability of the sensor are tied up in
generating a good beam pattern and ensuring its shape does
not change over time.

Several beam patterns and pattern generation methods have
proven successful. Time-of-flight anemometry (ToFA) is a
common class of approaches that was first introduced to meas-
ure velocity from smaller aerosols, and closer to walls than the
standard approach, laser Doppler anemometry (LDA), could
achieve (Smart et al 1981, Albrecht et al 2003). Rather than
generate an interference pattern by intersecting two beams as
LDA does, ToFA generates fewer but more intense laser sheets
or focal points at a given standoff distance from each other.
This, in principle, also divorces the accuracy of ToFA from the
laser’s ability to act as a coherence standard since a change in
wavelength need not change the beam spacing. The beam gen-
eration step is therefore even more crucial to overall perform-
ance of ToFA because the method of creating the beam profile
will determine to what degree light coherence effects accuracy
and repeatability. As a consequence, it determines what qual-
ity and type of laser and optics are needed. The exact paramet-
ers of the beam pattern itself will determine the repeatability of
the sensor’s measurements. Most ToFA methods generate two
parallel beams using aWollaston Prism and lens (Lading 1973,
Wernet and Edwards 1986). These methods generally require
careful alignment to ensure the beams are parallel and the cor-
rect distance apart. It can also only make one wavelength par-
allel at once, so it is not compatible with unstabilized diode
lasers at large distances. Multiple detectors are needed if flow
direction information is desired. Very small-scale ToFA and
shear stress sensors have been achieved by micro-fabricating a
diffractive optical element to produce a double-sheet pattern,
but this is also wavelength dependent to first order and pro-
duces diverging rather than parallel sheets, so it is not effective
at long range (Wilson et al 2000).

We propose a new method of generating the repeating
pattern needed for ToFA that uses refraction rather than
birefringence or diffraction. The method involves using a dis-
placement plate-beamsplitter to generate multiple, identical,
parallel output beams from a single input beam. Relatively
high efficiencies are achieved at low cost by using a plate
with a silvered rear surface, effectively making a second sur-
face mirror. Since the method is refractive rather than diffract-
ive or birefringent, as is the standard for ToFA, the effect of
light incoherence only appears in higher-order considerations,
when they appear at all. This is in contrast to more expens-
ive methods based on a Wollaston prism, which are often
more temperature and wavelength sensitive even at short range
where loss of parallelism of the output beams is not a con-
cern. This significantly reduces the requirements on the laser.
Secondary reflections, commonly considered to be undesir-
able ‘ghost beams’ in the context of mirror optics are actu-
ally the working principle utilized in this method to generate

shifted copies of the first reflection at the air-glass interface,
and can be tuned by changing the angle of incidence to achieve
a desired power content in these beams.

The existence of these ‘ghost’ beams is well known and
used extensively in a beneficial manner for flat plate inter-
ference methods such as in etalons, the Lummer–Gehrcke
interferometer, AR coatings, and the shear interferometer.
However most designs using geometric optics, such as lenses,
mirrors, and standard plate-beamsplitters, treat ghost beams
as undesirable aberrations for their respective applications. A
notable exception is the wedge beamsplitter where multiple
internal reflections are used to generate multiple output beams,
although the beams are not parallel and a reflective rear surface
is not present (Beers 1974, Azzam 2007).

Herein we develop the theory of displacement plate-
beamsplitter ToFA and subsequently demonstrate some of the
system’s desirable properties by characterizing a system using
this design that utilizes inexpensive components. Theory is
developed for beam power distribution, beam separation, and
beam aberrations, required manufacturing tolerances, as well
as the conditions required for matching the power content in
the first two beams. Matching power in the first two beams is
motivated in part by a Cramer–Rao bound (CRB) we develop.
In its most general form, our CRB is applicable to any set
of n identical and uniformly spaced Gaussian beams of arbit-
rary power with signal-independent Gaussian white noise. We
also show that constructing the beam profile for ToFA using
this method results in low sensitivity to temperature and light
incoherence, meaning the method is compatible with a variety
of low-cost light sources and applicable in extreme environ-
ments. A ToFA system using a consumer second-surface mir-
ror and diode laser without temperature control or mode sta-
bilization is constructed using this technique, and performance
characteristics are determined.

2. Theory

To perform ToFA, two parallel and highly controlled beam
profiles are usually desired. To generate this profile, we pro-
pose a new application of a standard optical element. The dis-
placement plate-beamsplitter uses a second surface mirror at a
large angle of incidence (≈80◦) to generate a repeating beam
pattern. This is possible due to partial external reflection off the
glass surface, nearly complete reflection off the silvered sur-
face, and multiple partial transmissions through the glass sub-
strate. Specifically, the beamsplitter produces the first beam
by specularly reflecting a portion of the power in the incid-
ent beam off of the first surface of the plate. The rest of the
light gets refracted into the plate’s interior where the light
reflects specularly off of the plate’s second surface. A fraction
of this light power then gets refracted out of the plate so that
it is parallel to the first generated beam. The rest of the light
gets reflected, back towards the second surface again and the
process continues until all of the light has either been trans-
mitted or lost. Because of its inherently asymmetrical nature
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Figure 1. The optical setup for creation of multiple, parallel,
identical-profile output beams from a single input beam at angle of
incidence β. The separation between beams, x, is on the order of the
flat plate’s thickness, ω. The beam that gets reflected off of the glass
is indexed as the i= 0 beam, and each sequential transmitted beam
is indexed as i = 1,2,3. . .. The flat plate has an index of refraction
n2 while the surrounding medium (usually air) has an index of
refraction of n1. For calculation of aberrations due to manufacturing
errors, a ray is allowed to be displaced by z from the chief ray of the
input beam. Also, a small wedge angle A between the surfaces and
large radii of curvatureR1 and R2 with common optical axis are
allowed. These imperfections introduce slight alignment mismatch
between the beams’ chief rays, ∆β (both i and curv subscripts),
here shown as a negative value. Also, even though the beamsplitter
is nominally flat it modulates the focal depth of beams by the
quantity∆f (both s and p subscripts). For this reason it is necessary
to consider rays that make an angle of γp with the input chief ray
(or, angle γs out of plane, not shown). For uncertainty calculation
purposes the beams are approximated as Gaussian, each with a 1/e2

radius, or half-thickness, of r in the thin axis of the laser sheets.

(a decaying tail in the overall amplitude of the higher order
beams), this method produces a naturally existing feature for
detecting reverse flows without the need for multiple detect-
ors. If higher volumetric efficiency is desired, the higher order
beams can be blocked (see discussion of the CRB for more on
this). A diagram of the geometric optics of this optical element
is shown in figure 1.

To properly design a ToFA system using this optical ele-
ment, it is important to know the value of the standoff dis-
tance between each output beam, x, the level of aberration
that occurs in the output beams, the allowable manufacturing
tolerances, and the power in each beam for a given angle of
incidence.

2.1. Beam separation

The first beam, which is reflected immediately, is denoted by
the index i= 0. Each subsequent output beam, caused by par-
tial transmission, is denoted by i⩾ 1 with the first transmitted
beam being i= 1. The value of the separation distance between
successive beams can be found through sequential applica-
tions of Snell’s Law, and the result is well known. The plate
thickness, ω, angle of incidence, β, and the ratio of material
indices of refraction, ν, are related to the standoff distance, x,
by, Wyant (1976)

ν ≡ n2
n1

,

x=
ω sin2β

ν

√
1−

(
sinβ
ν

)2
. (1)

By controlling the plate’s thickness it is therefore possible to
produce almost any beam separation at almost arbitrarily large
or small distances from the beamsplitter because this equation
holds true regardless of the diameter of the incoming beam,
and it is relatively easy and inexpensive to produce large and
flat glass plates. Bymaking the incoming beam diameter large,
possibly orders of magnitude greater than x, it is possible to
keep the laser beam’s numerical aperture large even for long
range systems. As a result the beam spot size can be kept small
relative to x, which produces higher signal to noise ratios and
more precise measurements.

2.2. Beam aberrations

Since both optical surfaces are flat, if the beam is collimated
each output beam’s waveform is not distorted beyond distor-
tions introduced by surface unevenness. The output beams are
parallel to a very close approximation. This means the sys-
tem’s calibration is essentially the same regardless of depth.
By utilizing the same lens for the laser and receiver (placed
before the laser light reaches the beamsplitter), as is common
for LDA and ToFA, the transmitter/receiver system becomes
self-aligning.

However, one of the least attractive aspects of the displace-
ment plate-beamsplitter in the context of ToFA is that if instead
the beam is focused to a finite depth, this depth is altered for
beams of order i> 0, and the quantity of this change depends
on both the ray angle and the axis. This introduces defocus-
ing, spherical aberration, astigmatism, and even coma. As a
result, each beam will focus (in a slightly degraded manner) to
its waist at a slightly different distance from the beamsplitter.
Higher order beams will have a progressively degraded focus
in the measurement volume as a result. Essentially, the system
is self-aligning and focusing but the level of alignment and
focus is not perfect and not independently tunable. Consider a
ray of light that makes an angle of γs with the chief ray from
the laser diode (the ray at the axis of symmetry of the incom-
ing beam) in a plane normal to the plane depicted in figure 1.
The subscript s here relates to the plane in which the ray devi-
ates from the chief ray and does not imply it is only relevant to
a certain polarity of light. Due to symmetry, no coma is pos-
sible in this axis. However, as was already known at the time
but analyzed in mathematical and numerical detail by Fried
and Turner (1970), passage of this angled ray through the flat
glass will alter the eventual location where this ray crosses the
chief ray. The difference in location between beams of differ-
ent orders (i = 0, i = 1, etc) where this ray crosses the chief
ray asmeasured in the direction of propagation (using the loca-
tion where the chief ray leaves the first surface as the reference
point) can be described by,
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∆fs = x∆i

 2cosγs

sin2β

√
1−

(
sinγs
ν

)2
− tanβ

 , (2)

where∆i is the difference in the index of the two beams being
compared. The physical quantity this equation solves for is
represented as ∆f in figure 1. Since this is a non-trivial but
even function of the ray angle, spherical aberration is intro-
duced. The reason this equation differs somewhat from Fried
and Turner (1970) is because the beam is folded and placed on
an angle.

Now consider a ray of light that makes an angle of γp, from
above, with the chief ray (ie, it has a higher incidence angle)
in the plane depicted by figure 1. For this ray, the difference
in focal distance between it and the focal distance of the two
beams (again in the direction of propagation) is given by,

∆fp = x∆i

(cotγp−tanβ)


 sin (β−γp)

sinβ

√√√√√ 1−( sinβ
ν )

2

1−
(

sin (β−γp)
ν

)2

−1

−tanβ

.
(3)

This equation represents the same physical quantity as ∆fs,
so it too is represented as ∆f in figure 1. However, because
it comes from an angular deviation that is orthogonal to the
one that causes ∆fs, its value is different. Since this equation
is not even, coma is introduced. Since it is not identical to
equation (2), astigmatism is introduced. As γs and γp tend
to zero, the spherical aberration and coma disappear, but the
defocus and astigmatism remain. Assuming ∆fp is small for
all rays in the beam relative to the depth of focus, the beams
will focus to a diffraction limited sheet at the same depth. The
depth of focus for a Gaussian beam can be written in terms of
the laser’s wavelength, λ, and the half apex angle, Θ

b=
2λ

πn1Θ2
. (4)

Comparison of b and ∆fp is critical for designing a system
with sharp focus. The signal strength for laser anemometry
depends directly on the beam’s power density, and measure-
ment uncertainty also decreases when the beams are thin com-
pared to their separation. These equations imply the displace-
ment plate-beamsplitter performs best when the numerical
aperture is kept small enough to avoid aberrations but not so
small that the beam waist is undesirably large.

2.3. Tolerances

The theory developed thus-far assumes a plate with perfect
parallelism, perfect flatness, and immaculate surface quality
is used. Real flat plates have none of these properties. The
multiple reflections and two refractions experienced by higher
order beams as well as the high angle of incidence present in
this beamsplitter will amplify any imperfections in construc-
tion. This makes the allowable tolerance on the plate quite
small. Luckily the methods available for producing flat plates,

and especially flat surfaces, are among the most foundational
and well refined in the fields of optics, metrology, and vari-
ous industries. It is possible to obtain flat glass plates with
extremely small tolerances that suffice to allow it to be used as
a displacement plate-beamsplitter.

The required parallelism tolerance is the most difficult to
achieve both because the effect of a small wedge angle is
greatly amplified at large distances, and because it is more dif-
ficult to align two planes to each other than it is to produce a
single pristine plane. Using the results of Beers (1974), we
can derive a formula for the difference in angle between the
0th and ith beams, ∆βi. This quantity, represented as ∆β, is
shown in figure 1. Note that in this figure the angle shown is
a negative value. For a beamsplitter with wedge angle A, one
can re-derive a result first produced but not published by Beers
(1974),

∆βi = β− arcsin

(
ν sin

(
arcsin

(
sinβ
ν

)
+ 2iA

))
. (5)

This formula shows high angles of incidence greatly increase
the sensitivity to A. Consider the case of s-polar light, where
β is tuned such that the power contained in the i= 0 and i= 1
beams are the same, ν is not approximately 1, and iA<< 1.
With these assumptions a convenient approximation for ∆βi
exists:

∆βi ≈−2iAξ. (6)

More information on beam power matching and the defini-
tion of ξ are given in section 2.6. Intuitively this equation res-
ults in the conclusion that for practical designs |∆βi |≳ 8iA.
If the beams converge or diverge too much their separation
at the depth of the intended measurement volume will be
too great. To achieve x= 1mm at 1m measurement distance,
|A| should be 25 arcseconds at most to avoid the chance of
the beams crossing in the measurement volume. At greater
range, for smaller ω or higher β, if predictable calibration
is desired (especially at multiple depths), or if more beams
are kept, the requirement becomes even more strict. Optical
flats and optical windows can be obtained with parallelism
of<5 arcseconds without difficulty whereas lower parallelism
tolerances come at an increasing premium. The parallelism of
float glass varies significantly from batch to batch and even
across a given pane, however we did not find it difficult to
obtain float glass mirrors with parallelism in the vicinity of
1 arcsecond.

Surface flatness effects the beamsplitter’s performance in
three primary ways. Firstly each beam gets re-focused by the
curvature of the beamsplitter’s two faces. Secondly, beams of
different orders interact in a slightly different way with the
beamsplitter’s slight curvature and thus they are not parallel
to each other anymore. Finally, if the diameter of the beam at
the displacement plate-beamsplitter is comparable to the dis-
tance over which the curvature changes, the complex surface
unevenness profile will show up as further aberrations that will
appear in the focused beams. To make analysis tractable it is
convenient to assume the beamsplitter is locally spherical with
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radiusR1 on the first surface and radiusR2 on the second sur-
face (concave down is positive). It is also convenient to use
the best-fit parabola to mathematically approximate this spher-
ical curvature. It is assumed that the axis of these surfaces are
aligned, forming an optical axis, and that the chief ray strikes
the first surface at the optical axis. Assuming the input beam
is collimated, one can track the position and angle of a ray
through the beamsplitter if the ray has a displacement of z from
the chief ray (see figure 1). For the i= 0 beam, a reflection
off of the first surface is experienced, so this is just a clas-
sic parabolic reflector (the math is fairly simple in this case,
and both focus and aberration have been fully studied). For
instance, for a parabolic reflector one can derive an equation
for the intersection depth of a ray with the chief ray (assuming
the reflector’s height variation can be ignored and assuming
surface slope is small),

f0(z)≈−R1 cosβ
2

+
z
2
sin(2β). (7)

When β is small this reduces to the classic result for the focal
length of a spherical mirror or best-fit parabolic mirror, f0 ≈
−R1

2 . Increasing β increases the focusing power of any slight
curvature in the first surface as well as producing progressively
greater coma.

The i= 1 beam is produced from refraction off of the first
curved surface, reflection off of the second surface, and then
refraction again off of the first surface. By tracing a ray through
this path it is possible to obtain an expression for the angle
between the reflected chief ray for the i= 0 beam (reflected
at angle β) and the i= 1 transmitted ray (that started z above
the chief ray). The angle between higher order beams can
also be determined but the formulas become unwieldy. Using
some trigonometry and using the same small slope and height
assumptions as before, the angle difference ∆βcurv is found
to be,

κ(z)≈ arcsin

 sin
(
β+ zcosβ

R1

)
ν

− zcosβ
R1

d1(z)≈ zcosβ+ω tan(κ)

d2(z)≈ ω tan

(
κ+ 2

d1
r2

)

∆βcurv(z)≈ β− d1 + d2
R1

− arcsin

(
ν sin

(
κ+ d1

(
1
R2

− 1
R1

)
+

(
d1
R2

− d2
R1

)))
.

(8)

The intermediate variable κ represents the angle the ray makes
to the optical axis after entry into the glass. The variable d1
represents the distance from the optical axis to where the ray
hits the second surface. The variable d2 is the difference in dis-
tance (from the optical axis) between where the ray of interest
reached the first surface fromwithin the glass and where it first

reached the second surface. The quantity∆βcurv(0) represents
the loss in parallelism due to imperfect flatness in the beam-
splitter. Figure 1 shows ∆βcurv(0) as ∆β. It is important to
note that much less parallelism error is introduced ifR1 =R2

(about 5 arcseconds if R1 = 50,000ω, regardless of ν, for β
of roughly 75◦) than if R1 =−R2 (about 100 arcseconds if
R1 = 50,000ω, regardless of ν, for β of roughly 75◦). Due to
the way it is manufactured, float glass tends to have curvature
of the same sign on both surfaces whereas for optical flats this
is not likely. Even though optical flats have vastly superior flat-
ness, the types of manufacturing errors made by float glass are
less costly so the performance gap is smaller than expected.
The depth where the ray of interest crosses the chief ray in the
i= 1 beam (measured along this chief ray from where it left
the beamsplitter) can be found using,

f1(z)≈
d1(z)+ d2(z)− d1(0)− d2(0)

∆βcurv(z)−∆βcurv(0)
cos(β−∆βcurv(0))

+ sinβ(d1(z)+ d2(z)− d1(0)− d2(0)). (9)

To a good approximation, the beam re-focusing effect
described by f 1 is caused exclusively by reflections. This is
true for beams of all orders, not just the first beam. The reason
is because for beams i> 0 the beam encounters exactly two
refractions that almost exactly cancel the focal effect of each
other (one when entering the glass and one when leaving it).
If R1 =R2 then behavior of a given ray is almost the same
for the i= 0 and i= 1 beams (ω ≳ |f0(z)− f1(z)|). As a res-
ult, it is a good approximation to assume f1(z)≈ f0(z) and
so any re-focusing effect caused by surface curvature will
be eliminated almost entirely during initial alignment. This
holds true even for fairly large z. Therefore, the only relevant
and potentially significant error introduced by identical (first
and second surface) local surface curvature in a displacement
plate-beamsplitter is classical parabolic reflector coma. If the
beam diameter at the displacement plate-beamsplitter is a sig-
nificant fraction of the length scale over which the radius of
curvature in the glass changes, complex surface-specific beam
aberrations will occur. The magnitude of these more complex
aberrations can be approximated using equations (7)–(9) as a
starting point.

While surface quality can be an important optical consid-
eration, we expect it to rarely be critical for this application
despite the high angle of incidence and multiple reflections.
The reason is both because the beam is not focused on the dis-
placement plate-beamsplitter (so the power density is low, and
imperfections are not focused into the measurement volume),
and because it is more difficult to achieve acceptable levels
of parallelism in the plates than acceptable levels of surface
quality through polishing.

Considering |A| and R1 ≈R2 are generally more import-
ant than |R1| in determining performance, properly sourced
and inspected float glass should be competitive with precision
ground optical flats in terms of performance despite their sig-
nificantly lower cost. More generally this analysis shows that
tolerancing issues should not be prohibitive even with designs
that take advantage of the longer ranges this method enables.
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2.4. Beam power

The power in the ith beam, Pi, can be found by applying the
Fresnel power equations to each reflection or transmission,
accounting for the reflectivity of the second surface, Rm. When
this is done, equation (10) results. Similar calculations have
been performed by others for wedge beamsplitters, (Beers
1974)

Pi =

{
PTR i= 0

PTRimR
i−1(1−R)2 i> 0,

(10)

where PT is the total power incident onto the displacement
plate-beamsplitter. The analysis is greatly simplified by the
fact that the fraction of light transmitted on each internal
reflection at a glass-air interface, R, is equal to the fraction of
light initially reflected off of the glass at the air-glass interface
(Beers 1974). The Fresnel equations in the p and s-polar cases
are used to find this fraction, R,

R=



[
cosβ
ν −

√
1−( sinβ

ν )
2

cosβ
ν +

√
1−( sinβ

ν )
2

]2

s− polar[
ν cosβ−

√
1−( sinβ

ν )
2

ν cosβ+
√

1−( sinβ
ν )

2

]2

p− polar.

(11)

Note that the beamsplitter produces degenerate outputs for
excessively large and excessively small angles of incidence
since,

lim
R→1

Pi =

{
PT, i= 0
0 ∀i ̸= 0

,

lim
R→0

Pi =

{
PTRm, i= 1
0 ∀i ̸= 1

. (12)

2.5. CRB

Under the assumption that themain source of noise is Gaussian
and signal-independent (ie shot noise from unwanted back-
ground light entering the detector, or thermal noise), it is pos-
sible to use a CRB to find the minimum possible uncertainty
in measured velocity resulting from a single particle passing
through nGaussian beams spaced x apart, eachwith 1/e2 beam
radius r and power Pi. The relative 1 standard deviation preci-
sion in measurement velocity V is bounded by,√

Var[V̂]

V
⩾ 1

δrS/N
√
η
, (13)

where δ = x/r is the ratio between beam width and beam sep-
aration, and rS/N =

∑
Ai/Ng is the signal to noise ratio. The

value for
∑
Ai can be determined by summing the amplitudes

of the Gaussian peaks observed in a return signal or it can be
predicted from first principles using the laser beam’s power
output, the particle scattering parameters, and the definition
given in the appendix. The noise Ng can be determined by cal-
culating the standard deviation of the noise in a return signal.

The variable η is the power utilization efficiency, which is a
quantity that is specific to a given configuration that repres-
ents how well the beam power is utilized in producing Fischer
Information for V. Our derivation is given in the appendix. It
follows closely the derivation given by Fischer et al (not the
original author for which Fischer Information is named), and
matches their results for the special case of n= 2, P0 = P1,
and when PT = P0 +P1 (ie, equation (10) is not used) (Fischer
et al 2010). The general case for η, which allows for any num-
ber of beams of any arbitrary power level so long as they have
the same width and they are Gaussian is,

η ≡ 1
2
√
π


n−1∑
i=0

(
Pi
PT

)2

i2 −

(∑n−1
i=0 i

(
Pi
PT

)2
)2

∑n−1
i=0

(
Pi
PT

)2

 . (14)

Important properties of η are that it is invariant to changes in
laser power, invariant to spatial shifts, and invariant to spatial
scale. This means η is an intrinsic quantity related to the geo-
metry of the beam pattern itself. Under the assumptions lead-
ing to equation (10) (ie, our setup), and in the limit of infin-
ite numbers of beams (which would occur if the measurement
volume were infinitely wide), η can be expressed in terms of
just Rm and the ratio of the power in the first transmitted beam
to the reflected beam, R1/0,

η =
R2
m(1−R)4

2
√
π(1−R2

L)
3

(
1+R2

L−
R2
m(1−R)4

R2(1−R2
L)+R2

m(1−R)4

)
.

(15)

The expression utilizes the definition RL ≡ RR1/0 where R is
fully specified by Rm and R1/0. In fact it can be shown that

RL = Rm+R1/0/2−
√
R1/0Rm+R2

1/0/4. The expression for

RL follows from its definition and equation (10). A graph of√
η as a function of R1/0 for Rm = 1 is given in figure 2.
As illustrated in figure 2, putting more of the laser’s energy

in the first beam results in the greatest signal efficiency, how-
ever the cost of doing so is higher incidence angles are needed
to achieve this state. Therefore the sensor will experience
greater sensitivity to changes in angle (ie from vibration or
setup error) as well as greater difficulty detecting the other
peaks in the presence of other forms of noise. The perform-
ance degrades both when R1/0 ≫ 1 and R1/0 ≪ 1, as expected,
since in either case almost all of the energy goes into a single
output beam.

Compared to two-spot or two-sheet ToFA, our method
has greater efficiency for all R1/0, although this is because
the higher order beams of our method increase the effect-
ive sampling volume: equation (15) assumes an unboun-
ded measurement volume by considering an infinite num-
ber of beams. Often only the first few beams (at most three
or four) are needed to achieve similar performance to that
given in equation (15). This is shown by the

√
η curves in

figure 2 where only three of the generated beams are in the

6
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Figure 2. Signal efficiency
√
η as a function of the ratio of power in

the first two beams, R1/0, with Rm = 1 (−). The value of
√
η is

given for the scenario where the measurement volume is nominally
x, 2 x, and ∞ wide (corresponding to sensing only the first two,
three, and all beams). Also shown is

√
η for a standard two-spot

setup under the assumption of zero power loss, which is given by
Fischer et al for equal beam powers and given in general from
equation (14). by assuming P0 = P1 =

PT
2 (−·). Notice the

maximum of
√
η for our configuration, where the measurement

volume’s width greatly exceeds x, occurs at R1/0 = 0.6574, while
the maximum for a two-spot setup occurs at R1/0 = 1 as is expected.

measurement volume: performance is similar to when all of
the beams are in the measurement volume. Regardless of
how many beams are kept in the measurement volume, when
considering any number of beams truncated at n> 2, for a
given x, the measurement volume of our method exceeds
that of two-spot or two-sheet ToFA. Therefore, for a given
volume two-spot ToFA can be more power efficient if the
beam splitting method is highly efficient, but only by at most
3−

√
5 if the second surface for our method is highly reflect-

ive (see equation (19) and subsequent discussion). Actually
this means that our method is up to 76.4% efficient at produ-
cing a two-spot beam by blocking off or otherwise ignoring
the higher order beams, which is lower than most two-spot
methods but not greatly so. Note that the

√
η curve when two

beams are in the measurement volume is not quite identical
to the two-spot curve, even if re-scaled, because the two-
spot curve does not include a power loss model that changes
with R1/0.

Matching the power in the first two beams often strikes
a good balance between maximizing η and achieving reas-
onable signal profiles and incidence angles. It also allows
detection of reverse flow if the third beam is kept. Indeed,
figure 2 shows R1/0 = 1 achieves nearly optimal values of
η regardless of how many beams are kept in the measure-
ment volume. If just two beams are kept, the performance
is very close to optimal. We now discuss various aspects of
this special configuration both due to its theoretical advant-
ages (especially if only the first two or even three beams are
kept) and to illustrate various aspects of the beam profile in
general.

Figure 3. The beam-matching value of incidence angle β as a
function of index of refraction ratio ν, with mirror reflectivity
Rm = 1. Notice how a minimum angle of incidence occurs for
p-polar light at ν≈ 1.4 but no such minimum exists for s-polar light.

2.6. Beam matching

It is possible to tune the angle of incidence, β, in order to
match the power of the first reflection and the first transmission
beams (R1/0 = 1). In fact, any power ratio between the i= 0
and i= 1 beams is possible in most cases. The tuning angle
required to match power in the first two beams can be cal-
culated algebraically. This is done by setting P0 = P1 using
equation (10), substituting equation (11) for R, and solving for
β. The result is,

ρ=

√
1+ 4Rm
Rm

,

β =


arccos

[
1
2

√
(1− ν2)(2− ρ)

]
s− polar

arccos
[√

(1−ν2)(1−ν4(1+4Rm(2−ρ)))
1+ν8−2ν4(1+8Rm)

]
p− polar

.

(16)

Notice that the beam power matching equations depend
only on two variables: the index of refraction ratio at the beam-
splitter’s first surface, and the reflectivity of the second surface.
These equations are plotted in figure 3. Notice that for the s-
polar orientation there always exists a value of ν such that a
desired matching angle β is achieved, while for p-polar light
the matching angle achieves a well-defined extremum at just
above ν= 1 and just below ν = 1/ξ. If the beam spacing is
strongly dependent on β, the system is more difficult to align
and more susceptible to vibration. Also if ∆fp is high relative
to b, the level of defocusing between beams in the measure-
ment volumewill be significant. Since dx

dβ is smaller for β close
to 45◦ and ∆fp is smaller near this angle too, the s-polar ori-
entation has significant theoretical advantages, especially for
high index materials (but not exceeding ν≈ 3).

It is not always possible to match the power of the two
beams as indicated by the fact that these equations do not

7
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Figure 4. A depiction of how the displacement plate-beamsplitter
can be configured with the laser to generate a desired output beam
pattern. Configuration 1 is the conventional setup. It uses a large
angle of incidence. This works for both p-polar and s-polar light.
Configuration 2 uses a slight angle of incidence and a transition
from high index to low index rather than from low index to high
index, making it a possibility for fiber lasers. Configuration 2 is only
compatible with p-polar light and is only feasible in special
circumstances.

always return a real number. This is the case if the argu-
ment of the square root is negative or if the argument of the
inverse cosine exceeds 1. For s-polar light, beam matching is
only possible if (1− ν2)(2− ρ)⩾ 0 and (1− ν2)(2− ρ)⩽ 4,
which implies |ν|⩾ 1 and |ν|⩽

√
(ρ+ 2)/(ρ− 2). For posit-

ive indices of refraction, the combination of these two require-
ments can be expressed as,

ξ =

√
ρ+ 2
ρ− 2

,

ν ∈ [1, ξ]. (17)

For p-polar light and positive indexes of refraction, for the
same reason, it is only possible to match beam powers in the
domain,

ν /∈
[
1
ξ
,1

]
. (18)

Therefore in the p-polar case there is a small region of index
of refraction space where beam matching is possible and also
0< ν < 1. This suggests a second potential configuration for
beam splitting. The configuration is more compact than the
conventional one since the angle of incidence is small. How-
ever it is only possible to achieve in special circumstances
such as with infrared light and aGermanium-air interface since
ξ(Rm = 1)≈ 4.236. See figure 4 for a depiction of both the
conventional and second configuration.

The amount of light contained in the first two beams when
the beams are forced to have the same power is independent
of polarization as well as ν. The rest of the light is absorbed,

Figure 5. The power fraction in each beam as described by
equation (20) where the mirror reflectivity, Rm, is 1 (the height of
each black vertical line represents the power fraction in a given
beam). Cumulative power, defined as the sum of the power in each
beam along with those preceding it

∑i
j=0Pj, is also shown as black

circles.

or goes into the periphery beams. When the beams are tuned
to this angle, at each glass-air interface, the fraction of light
reflected is given by the solution of PTR= PTRm(1−R))2 for
R. This comes directly from setting P0 = P1 in equation (10).
The solution for R under this constraint, denoted by Req, is

Req = 1+
1

2Rm
− ρ

2
√
Rm

. (19)

The other root obtained is non-physical. Notice only one
independent variable is present, Rm. The maximum amount of
light contained in the first two beams, if they match powers,
occurs when Rm = 1. According to equation (19), this means
the maximum power in the first two beams when they are
matched is R0 +R1 = 2Req = 3−

√
5≈ 76.4%. Substituting

Req for R into equation (10), it follows immediately that after
the first two beams the light contained in each successive beam
decreases geometrically as follows

Pi+1 = ReqRmPi ∀ i> 0. (20)

Again the only independent variable in equation (20) is Rm.
Since this variable is generally close to 1, the power fraction
in each beam is essentially universal under the condition that
R1/0 = 1. The beam powers for Rm = 1 are shown in figure 5.

2.7. Temperature sensitivity

A laser anemometer’s temperature sensitivity comes from dif-
ferences in the Doppler shift sensitivity in LDA (usually equi-
valent to a fringe spacing difference) or changes to the beam
separation for standard ToFA methods (Kitchen et al 2003).
We show theoretically that the temperature sensitivity is neg-
ligible in our setup using an unstabilized Sanyo 405 nm laser

8
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Table 1. Laser and beamsplitter properties used to calculate
temperature and coherence errors.

Parameter Value

Rm 0.9
ν 1.54 Rubin (1985)
ω 2.8mm
∆λ 1 nm
FWHM 1nm
α≡ 1

ω
∂ω
∂T 9× 10−6 ◦C−1Ashby (2013)

λ 405 nm
∂λ
∂T 0.06 nm◦C−1

∂ν
∂λ

−10−4 nm−1Rubin (1985)
∂ν
∂T 2× 10−6 ◦C−1Jewell (1991)
β 82.9◦

diode and soda-lime glass displacement plate-beamsplitter
with 20◦ C room temperature. All of the properties used for
the calculations in this section are given in table 1.

The sensor’s temperature dependence comes from a com-
bination of changes to the index of refraction induced by las-
ing wavelength changes, glass expansion, and index of refrac-
tion changes with temperature. The values provided in table 1
are used to approximate the change in index of refraction with
respect to a small change in temperature,

dν
dT

=
∂ν

∂T
+

∂ν

∂λ

dλ
dT

. (21)

This means dν
dT =−4× 10−6 ◦C−1. This result can be used

in conjunction with equation (1) to find the change in separa-
tion distance with respect to a small temperature change,

dx
dT

=
∂x
∂ω

∂ω

∂T
+

∂x
∂ν

∂ν

∂T
. (22)

For our setup this means dx
dT = 8nm◦C−1. The partial deriv-

atives of x can be obtained by differentiating equation (1).
Close to our linearization temperature, the temperature
induced error rate in velocity readings is,

dV
dT

V
=

dx
dT

x
. (23)

For our setup a value of
dV
dT
V = 1× 10−5 ◦C−1 is found. The pro-

posed method is therefore essentially temperature insensitive
because a 100 ◦C temperature change will cause only a 0.1%
measurement error.

2.8. Incoherence sensitivity

The effect of the laser’s incoherence on x is very important
when using an unstabilized laser diode without temperature
control because most diode lasers exhibit poor coherence
properties on their own. Since our method uses geometric
optics only, temporal coherence is not a factor. Non-ideal
spectral coherence on the other hand can reduce both accuracy
and precision. It could also potentially limit how small x can
be made because dispersion broadening of the beam spacing

could broaden the beams into each other for sufficiently small
x (note however that dispersion does not change the degree
to which the output beams are parallel). The change in beam
separation for a given wavelength drift, which is also the peak
width increase for a given spectral bandwidth (due to disper-
sion), is given as follows,

dx
dλ

=
∂x
∂ν

∂ν

∂λ
. (24)

Since the change in beam spacing is directly proportional
to ∂ν

∂λ , low dispersion is beneficial for this method. However,
we have already stated the benefits of high ν when using an s-
polar configuration, but high index of refraction materials gen-
erally have low Abbe numbers. The choice of plate material is
a tradeoff. For our setup a value of dx

dλ = 65 is found. For a 1nm
wavelength drift or a 1 nm FWHM spectral bandwidth (both
are typical for a diode laser), the corresponding wavelength

fluctuation or beam width increase is
dx
dλ
x ∆λ= 0.01% of x. As

a comparison, two beam LDA has a fringe spacing relation of
x= λ

2sinθ/2 where θ is the angle between the two beams, so
dx
dλ
x ∆λ= ∆λ

λ = 0.2% and this is true regardless of the angle
between the beams (in reality there are also other reasons to
stabilize a diode laser for LDA) (Albrecht et al 2003). Beam
width broadened and beam separation are therefore affected
very little by dispersion resulting from the laser’s lack of spec-
tral coherence in our setup despite using a glass with moder-
ate dispersion properties. Hence, even for unstabilized diode
lasers we recommend optimizing ν rather than the Abbe num-
ber. Non-ideal spatial coherence limits how small the focal
point can be and thus how small the measurement volume can
be, but otherwise does not effect accuracy or precision dir-
ectly. Since this method does not put strong restrictions on the
light source’s coherence it may even be possible to use non-
lasing sources so long as their spectral radiance is sufficient to
achieve good signal to noise ratios.

3. Methods

For a proof of concept experiment, a Sanyo 405 nm laser diode
was chosen due to its relatively Gaussian beam shape and low
cost. The single-mode beam shape allows for precise multi-
sheet pattern to be produced with just a focusing lens to focus
the diode’s expanding beam, a 50mm focal length plano-
convex cylindrical lens to create the laser sheet, and the dis-
placement plate-beamsplitter to generate the repeating beam
pattern of laser sheets from the single sheet (see figure 6).
The chosen angle of incidence was 82.9◦, and the displace-
ment plate-beamsplitter was cut from a 2.8mm thick glass-
front mirror. The mirror was held at the chosen angle using a
3D printed mount. The laser diode has a measured power out-
put of 12mw. The beam profile as defined by a Gaussian fit
has parameters R1/0 = 0.137, r= 0.0828mm (the diffraction
limit is 0.03mm), and δ= 6.62. In our setup with a cylindrical
lens and circular beam, it is the orientation of the lens rather
than the polarization of the diode’s beam that is aligned with
the long axis of the laser sheet. For this reason and because
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Figure 6. The experimental setup. The forward-scatter
configuration allows a translucent pinhole to be used to simulate a
particle passing through the beams (the detection configuration is
not a focus of the experiment). Depiction not to scale.

Figure 7. Beam profile resulting from the optical setup, with two
other relevant lengths (in the box) for scale. The profile was
extracted from the pinwheel experiments by ensemble averaging the
data. The pinhole size is clearly much smaller than the beam
diameter. Notice that the beam powers do not match, which is a
result of the 3D printed mount being printed for a polarity that was
not observed in the experiment due to the difficult in controlling the
diode’s orientation during setup. This reduced η relative to a
power-matched profile.

we did not have precise control of the diode’s orientation in its
heat sink, we did not utilize equation (16) to ensure R1/0 = 1.
Figure 7 shows the beam profile used in the experiments.

The detector is a side view R3896 Hamamatsu PMT. A
10 nm FWHM bandpass chromatic filter and lens-pinhole
spatial filter are used to reduce noise. The 1/10th intensity
detection volume is 10mm3 and the distance to the detec-
tion volume from the detector is 258mm. The distance to the
detection volume from the beamsplitter is 287mm. The rel-
atively large detection standoff distance was chosen in order
to determine if the laser sheet profile and alignments can be
controlled precisely at these distances with this new method,
and because this ensures the defocusing and aberrations dis-
cussed in section 2.2 would not be an issue. In our setup Θ≈
0.004rad, so b= 16mm. At the same time, ∆fp =−4.8 mm
for γp = 0 with 0.2% variability in this value of ∆fp being
possible for values of γp corresponding to rays at the edge of

the beam (mostly caused by coma). Therefore the lag between
beam focusing is about 3× smaller than the depth of focus.

The performance of the sensor was determined using a pin-
wheel as the velocity standard (ITTC 2008). A 10µm pinhole
(with translucent white material placed behind it to spread the
transmission beyond that induced by diffraction) was placed
at a known distance from the center of rotation of the wheel,
thus allowing laser light to pass through to the detector once
per revolution. The pinwheel standard has a velocity uncer-
tainty based on a 95% confidence interval (CI) of 0.2%; the
uncertainty sources are 0.1% from angular velocity, and 0.1%
from radial position of the pinhole. This was determined based
on the measurement tolerance of the pinhole location as well
as the statistics of the fluctuations in rotation frequency of the
pinwheel measured across the range of speeds used for test-
ing; 0.795ms−1 ± 0.0016ms−1 to 7.95ms−1 ± 0.016ms−1

(95% CI).
The algorithm used for extracting velocity from the raw

intensity return is a standard autocorrelation method with sub-
sampling-rate resolution. The sub-sampling-rate resolution is
achieved by fitting a parabola to the first prominent autocorrel-
ation peak with non-zero shift. Points within 1/4th the distance
to the closest prominent autocorrelation minimum is used to fit
the parabola.

4. Results and discussion

The calibration test shows the laser anemometer has a
maximum-deviation accuracy of 99.1%, and a maximum one-
standard-deviation precision of 96.7% when using a single
particle/pinhole pass for measurement. The calibration test
results are plotted in figure 8, from which it can be determined
that the beam separation distance is 0.551mm. Equation (1)
predicts x= 0.583mm. This is less discrepancy than the pre-
cision with which ω was measured, which implies |A| is on the
order of arcseconds (see equation (5)). The fact that the rela-
tion is not a direct proportion indicates the existence of a slight
bias either in the algorithm, the pinhole reference velocity,
or in the circuit. The beam profile from the experiments are
shown in figure 7. Note how the beams are of similar widths,
but their profiles are not quite Gaussian and not quite identical
due to spatial noise along the direction of propagation. This is
typical of an unstabilized diode laser.

A graph of the precision at each speed tested alongside
the Cramer–Rao lower bound given in equation (13) using
equation (15) is shown in figure 9. In this figure the theoretical
CRB uses the values of rS/N, δ, and

√
η found at the lowest

velocity along with the 1√
V
dependence of rS/N for the cal-

culations, while the experimental CRB curve uses the values
found in the data at each velocity. Notice that equation (13)
bounds the precision from below quite tightly. The remainder
of the precision deficit is likely a combination of the non-
Gaussian nature of the beam profiles, unaccounted-for noise
sources, and the fact that our auto-correlation peak-detection
algorithm is neither a minimum variance unbiased estimator,
nor even a maximum likelihood estimator of velocity (Lading
1983, Lading and Edwards 1993). On the other hand the bias
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Figure 8. The calibration test results. The pinhole’s velocity is on
the vertical axis, and the measured autocorrelation shift is on the
horizontal axis. Note that the slope of the linear regression of these
points (−) is the previously unknown beam spacing.

Figure 9. The one standard deviation precision of the anemometer
at each speed measured, with the Cramer–Rao lower bound (CRB)
given in equation (13) plotted as well. The CRB as calculated from
the parameters found at the lowest velocity and then inferred at
other velocities (−) is plotted alongside the CRB as calculated from
the parameters found at each velocity (−−). Despite the algorithm’s
non-optimality, the CRB is essentially achieved. This may be in part
because the algorithm and the setup have slight bias, and because
the beam is sharper than a Gaussian.

detected in the calibration curve indicates that precision is
somewhat artificially deflated. Therefore the gap between the
CRB, which in its common form is for unbiased estimators,
and the achievable unbiased precision with our setup may be
larger than figure 9 indicates. Further improvements to the
accuracy and precision can be achieved by increasing δ and
by making R1/0 = 1. ToFA systems often use δ as large as 95,
which would improve the precision, and possibly accuracy, by
an order of magnitude (Smart et al 1981). Changing R1/0 can

improve the light utilization efficiency from
√
η = 0.0635 to

as much as
√
η = 0.207.

5. Conclusions

We proposed a ToFA system that uses a displacement plat-
beamsplitter to generate multiple light sheet profiles from a
single input light sheet that can be configured to detect reverse
flows in a natural way without needing multiple detectors.
Our experimental setup used just three optical elements and a
low cost laser diode on the transmission side in a non-optimal
geometry, but achieved 99.1% accuracy with 96.7% worst-
case precision. We developed a CRB for the sensor’s preci-
sion, as well as for a more general class of ToFA’s, and the
sensor we constructed nearly achieves this bound. Our experi-
ments in conjunction with the CRB indicate that with a larger
beam separation ratio and equal distribution of power between
the first two beams, the method could be useful for preci-
sion sensing applications without increasing cost; even when
used for two-spot anemometry, the power efficiency can be
as high as 76.4%, and both the bias and random errors can
be reduced by an order of magnitude simply by changing δ
and R1/0.

At the same time, the nature of the beamsplitter means the
input beam is copied and displaced without altering its shape,
so all other optics can be placed before it. This allows, for
instance, the beam separation to be much greater than the
diameter of the beam as it passes through the beamsplitter.
In long-range applications this is helpful because the entire
focusing optical area can be utilized, and the numerical aper-
ture of the focusing optics (and thus the beam waist thickness)
and beam separation can be controlled independent of each-
other and the range without incurring large cost. It also makes
a fully self-aligning setup straightforward to produce. The
setup is especially well suited for harsh environments where
our method’s insensitivity to environmental factors such as
temperature, and possibly even vibration, are important. The
downside is that various optical aberrations are introduced,
the largest relevant one being that beams of different orders
focus to a point at different depths. This is unimportant for
long-range applications where the focusing lens’ numerical
aperture is small, however it limits large numerical aperture
applications.

The main benefits to our method are its intrinsic simplicity
and ease of construction, as well as its usability with low cost
diode lasers and other light sources (so long as they have high
radiance and moderately narrow spectra) as well as low cost
optics, especially at long range. As the cost of laser diodes
and photodetectors continue to fall, we expect the cost of a
short or moderate range ToFA system based on our method to
be determined by the cost of the chromatic band-pass filter, if
one is used, or otherwise the sensor housing or data collection
and processing device, depending on the specific engineer-
ing requirements and economies of scale involved. This would
open access to laser anemometry to a wider group of scient-
ists and engineers who cannot otherwise afford laser anem-
ometers, and possibly facilitate uses outside of fundamental
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research such as feedback systems or even consumer handheld
devices.
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Appendix

The derivation given here is for the Fischer information of the
parameter vector θ = [V,P0,r, t0], as well as the CRB for V.
This derivation is a natural extension of the two-spot anem-
ometer result given by Fischer et al (2010). The major dif-
ference is that here the bound is valid for any beam pattern
composed of multiple Gaussian peaks so long as they have the
same width and the same separation, while the two-spot res-
ult of Fischer et al (2010) is specific to the standard two-spot
configuration. Our bound on velocity measurement variance
agrees with theirs in the special case that they consider when
n= 2 beams of equal power are used.

We assume that n beams are in the measurement volume.
We also assume that the power received by the detector from
a particle at position y in the 0th beam is P(y) = P0ζ(y) so
that the area under the Gaussian beam profile for the 0th beam
is
´∞
−∞P(y ′)dy ′ ≡ P0Y. The parameter ζ(y) represents the

fraction of beam energy that is captured by the detector for

a particle located at position y. This function changes for each
particle, but is approximately the same as a given particle
moves through each of the n beams. A detector such as a photo-
multiplier tube is used to takeM equally time-spaced samples
from the photon detection frequency function,

f(t) =
P0Y

Ephoton

√
2πr

n−1∑
i=0

Ri exp

[
−2V2(t− t0 − ix/V)2

r2

]
,

(25)

where Ri ≡ Pi
P0

is known apriori but P0 is not, and Ephoton is
the energy contained in one photon. The index i is the beam
number, where i= 0 is the first reflection, i= 1 is the second,
etc. The detector samples this distribution discretely over time
interval ∆t, indexed by k, giving the discrete function fk ≡
f(tk)∆t. This function measures the number of photons cap-
tured in each sample of length∆t rather than the photon detec-
tion rate.

The number of photons detected is corrupted by the exist-
ence of signal-independent additive Guassian white noise, Nk.
That is, at every sample point, the probability density function
of Nk is pr(Nk) =N (0, τ 2). As a result of the noise introduced
by Nk, the actual sampled value is fk = fk+Nk rather than fk.
The log-likelihood function is,

l(θ) =−
n−1∑
i=0

M∑
k=1

lik(θ). (26)

The log-likelihood summand is l(θ)ik ≡ 1
2 ln2πτ

2 +
( fki−fki)

2

2τ 2 .
The Fischer information matrix is the negative expecta-
tion taken over the data of the log-likelihood Hessian, H≡
∇θ

2l(θ); F≡−E[H]. Regularity was confirmed for n= 2
by Fischer et al (2010), so it follows that it holds for
any finite n as well. Since fki is deterministic and also the
only function of the parameters, the Fischer information
matrix is

Fjm =
n−1∑
i=0

M∑
k=1

E

[
∂2lik(θ)

∂ f̄
2
ki

]
∂ f̄ki
∂θj

∂ f̄ki
∂θm

, (27)

where E
[
∂2lik(θ)

∂f
2
ki

]
= 1

τ 2 . If x≫ r then the tails of the beams

have little overlap, so it is sufficient to approximate the prob-
lem by assuming the samples are taken each from their respect-

ive nearest peak, fki =
∆tP0YRi

Ephoton
√
2πr

exp
[
− 2V2(k∆t−t0−ix/V)2

r2

]
,

rather than taken from the entire underlying profile f k. Fur-
thermore, if in addition M≫ 1, the sum in k can be replaced
with an integral on (−∞,∞), and this can be evaluated
exactly.
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

F11 =
P2
0Y

2

16
√
πτ 2r3E2

photonV
3

∑n−1
i=0 R

2
i (8x

2i2 + 3r2)

F12 =− P0Y
2R2

i

8
√
πτ 2rE2

photonV
2

F13 =− P2
0Y

2R2
i

16
√
πτ 2r2E2

photonV
2

F14 =− P2
0Y

2x
2
√
πτ 2r3E2

photonV

∑n−1
i=0 iR

2
i

F22 =
Y2R2

i

4
√
πτ 2rE2

photonV

F24 = 0

F33 =
3P2

0Y
2R2

i

16
√
πτ 2r3E2

photonV

F34 = 0

F44 =
P2
0Y

2VR2
i

2
√
πτ 2r3E2

photon

(28)

The definition R2
i ≡

∑n−1
i=0 R

2
i was used to shorten the

expression, and only the upper half of the matrix is presented
because it is symmetric.

According to themulti-variate CRBwithout priors, the cov-
ariance matrixK is bounded from below, in the sense of posit-
ive semi-definiteness, by the inverse of the Fischer information

K⩾ F−1. (29)

The variance bound of interest is the one on element K44,
although the other elements can be quite useful since they
bound the other parameter estimate variances. A fundamental
property of positive semi-definiteness is that if a matrix is pos-
itive semi-definite, each of its diagonal entries must be as well.
Therefore K44 ⩾ 1

F44
, (Cover and Thomas 2005)

δ ≡ x
r
,

η∗ ≡ 1
2
√
π

n−1∑
i=0

R2
i i
2 −

(∑n−1
i=0 iR

2
i

)2

R2
i

 ,

r∗2s/n ≡
P2
0∆t2

E2
photon

Y2

r∆tV

τ 2
,

K44 = Var[V̂]⩾ V2

δ2r∗2s/nη
∗ . (30)

The dimensionless parameter δ represents the ratio of the beam
separation to the beamwidth. The dimensionless parameter η∗

is a function of only the allocation of power to each of the n
beams in the measurement volume, and is therefore a meas-
ure of the beam utilization efficiency. Note that η∗ is invari-
ant to spatial shifts, ie Rk = Ri+j ∀j ∈ Z , as it should be. The
dimensionless parameter r∗s/n represents the ratio of detected
signal to detector noise (both in terms of photons counted).
The expression for r∗s/n given allows the signal to noise ratio
to be determined before setting up the experiment by utilizing
the expected parameters of the laser beam and flow velocity.

The appearance of the flow velocity in the signal to noise ratio
comes from the fact that faster moving particles return less
intense signals because they are in the measurement volume
for less time. The grouping of terms in the expression for r∗s/n
shows that it is also possible to read the signal to noise ratio
directly off of a return signal by calculating the standard devi-
ation of the noise (in units of volts rather than photons), and
determining the signal level (also in volts) by taking the peak
height of the 0th beam’s signal.

In many cases it is more convenient to consider signal to
noise ratio in terms of the total laser power rather than the
power in the first beam. In this case, we can define the fol-
lowing new parameters,

η ≡
(
P0

PT

)2

η∗,

r2s/n =

(
PT

P0

)2

r∗2s/n. (31)

In terms of these variables, the relative uncertainty inmeasured
flow velocity is a simple manipulation of equation (30),√

Var[V̂]

V
⩾ 1

δrs/n
√
η
. (32)

For the special case of a displacement plate-beamsplitter, it
is known that P0/PT = R, and (Pi/PT) = RimR

i−1(1−R)2 for
i> 0 (equation (10)), so,

η ≡ R2
m(1−R)4

2
√
π

·n−1∑
i=1

(RmR)
2(i−1)i2 −

(∑n−1
i=1 i(RmR)

2(i−1)
)2

R2

R2
m(1−R)4 +

∑n−1
i=1 (RmR)

2(i−1)

 . (33)

Further specializing to the case where n→∞ and using
RL ≡ RmR, it is possible to produce a closed form expres-
sion. The following infinite sum identities are useful: for

|RL|< 1,
∑n−1

i=1 R
2(i−1)
L i2 = 1+R2

L

(1−R2
L)

3 ,
∑n−1

i=1 R
2(i−1)
L i = 1

(1−R2
L)

2 ,∑n−1
i=1 R

2(i−1)
L = 1

1−R2
L
. The result is,

η ≡ R2
m(1−R)4

2
√
π(1−R2

L)
3

(
1+R2

L−
R2
m(1−R)4

R2(1−R2
L)+R2

m(1−R)4

)
.

(34)

It is possible to re-express this equation by replacing R with
R1/0 ≡ P1/P0. To do so, use equation (10) and solve the
quadratic equation resulting from R1/0 = Rm(1−R)2/R: RL =

Rm+R1/0/2−
√
R1/0Rm+R2

1/0/4 (the positive root is not

relevant).
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