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A Classification Model for Predicting Fetus with down 
Syndrome – A Study from Turkey
Alptekin Durmuşoğlu a, Memet Merhad Ay b, 
and Zeynep Didem Unutmaz Durmuşoğlu a

aDepartment of Industrial Engineering, Gaziantep University, Gaziantep, Turkey; bDepartment of 
Industrial Engineering, Erciyes University, Kayseri, Turkey

ABSTRACT
The triple test is a screening test (blood test) used to calculate 
the probability of a pregnant woman having a fetus that has 
a chromosomal abnormality like Down Syndrome (DS). AFP 
(Alpha-Fetoprotein), hCG (Human Chorionic Gonadotropin), 
and uE3 (Unconjugated Estriol) values in the blood sample of 
pregnant women are computed and compared with the similar 
real records where the outputs (healthy fetus or a fetus with DS) 
are actually known. The likelihood of the indicators is used to 
calculate the probability of having a fetus with chromosomal 
abnormality like DS. However, high false positive rate of the 
triple test has been a problematic issue. One of the reasons of 
the high false positives is the differences in the norm values of 
indicators for the pregnant women from different geographical 
regions of a country. We use 81 patient records retrieved from 
Şahinbey Training and Research Hospital of Gaziantep 
University; Turkey. In our study, nine different classification 
algorithms were trained based on triple test indicators. 
Multilayer perceptron outperformed with 94.24% detection 
rate and 13% false positive rate. The multilayer perceptron can 
predict the outcome of triple test with a high level of accuracy 
and fewer patients are suggested for amniocentesis. This study 
is the first study using the MLP model for Turkish triple test data. 
Regional MLP models can eliminate the bias due to local biolo
gical differences.

Introduction

One of the most common chromosomal defect in fetuses is known to be Down 
Syndrome (DS or trisomy 21) (Shurtz, Brzezinski, and Frumkin 2016). DS 
does significantly impact both quality and length of life of individuals having 
this abnormality (Temming and Macones 2016) and their families. In this 
respect, it has been important for pregnant to be informed about DS existence 
before the birth. Various maternal serum biomarkers with or without ultra
sonography measurement are commonly used for DS screening (Ökem et al. 
2017). Measurement of maternal serum alphafetoprotein (AFP), human 
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chorionic gonadotrophin (hCG), and unconjugated estriol (uE3) at the begin
ning of the second trimester of pregnancy (called as triple test) is a well- 
established screening test for DS (trisomy 21) (Witters et al. 2001). It is a blood 
test typically performed during the second trimester (Shurtz, Brzezinski, and 
Frumkin 2016) and these three markers are used in combination to modify the 
maternal age-related risk of DS (Founds 2014) and thus determine individual 
risk of fetal DS (Shaw, Chen, and Cheng 2013). In the calculation of associated 
risk, maternal age-related risk is multiplied by likelihood ratios, determined 
according to the deviation of the measured levels of three markers from the 
expected median values. Most of existing approaches use posterior probabil
ities based on the median and the standard deviation of the markers, or by 
using a suitable multivariate statistical approach (Neocleous, Nicolaides, and 
Schizas 2016). Screening results that are equal to or greater than 1:274 (the risk 
of a 35-year-old for fetal Down syndrome at the second trimester) are accepted 
as positive (Phillips et al. 1992).

On the other hand, noninvasive identification of fetuses with DS is 
a diagnostic challenge (Yagel et al. 1998). Even though there have been some 
modifications in the method of prenatal screening over the last few years to 
increase the accuracy of the used method (Kaur et al. 2013) the best detection 
rate was obtained with four maker test which is 65% for 5% false positive rate 
(Wald et al. 1994). If gestational age is included (obtained via ultrasound scan) 
then detection rate increases to 72% with the same false positive rate. An 
abnormal screening result usually ends with suggestion of chromosomal 
analysis of amniotic fluid (amniocentesis) which is considered as confirmatory 
follow-up test (Tamminga et al. 2016). Fatal loss risk of amniocentesis is not 
outweighed by the rate of adverse obstetrical outcome induced by amniocent
esis (Muller et al. 2002). However there is still a risk associated with amnio
centesis. Increasing the accuracy of detection rate of screening tests can be 
assistive to avoid risks associated with amniocentesis. Predictive classification 
with triple test data refers to the assignment of a particular unknown blood 
sample to a DS class based on its similarity to certain quantitative patterns 
from learning data set. This classification can be performed by a training 
predictive classifier, like a neural network classifier. Neural networks provide 
an effective and promising platform for medical data analysis and especially 
classification, since they allow us to solve rather complicated classification 
tasks (Autio, Juhola, and Laurikkala 2007).

It is expected to be useful to employ neural network classifiers while the 
detection rate is low to recognize DS by traditional statistical approaches. In 
this paper, we propose a specific type of neural networks (Paiva, Cardoso, and 
Pereira 2018), multilayer perceptron model, to predict risk of DS in a more 
accurate manner.

The remainder of this paper is organized as follows: In Section 2, 
a description of the data and the methodology employed is presented. 
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Section 3 shows the results obtained. Discussion and conclusion are presented 
in Sections 4.

Markers of Triple Test

Screening methods needs to be planned and organized to be applied as 
routine clinical practice. This process covers selection of markers which 
there is sufficient scientific evidence of efficacy, quantifying performance in 
terms of detection and false positive rates (Wald et al. 1997). There are 
different markers which have been proven to be important for prenatal 
screening. One of these markers is maternal serum alpha-fetoprotein. 
Lower level of maternal serum AFP values has been associated with the 
increased risk for DS. Almost 35% of Down’s syndrome in fetuses can be 
identified by measuring maternal serum alpha-fetoprotein during the second 
trimester in the general population of pregnant women (Haddow et al. 
1992). In the late 1980s, high levels of another serum marker, hCG were 
found to be associated with DS (Driggers and Seibert 2008). Later on, uE3 
measurements made the test a triple test by the end of the 1990s (Shaw, 
Chen, and Cheng 2013; Tamminga et al. 2016). Recent case-control studies 
indicate that current detection rate can be approximately doubled by mea
suring serum levels of unconjugated estriol hCG, which are abnormally low 
and abnormally high, respectively, in women carrying fetuses affected by 
Down’s syndrome (Haddow et al. 1992).

Maternal age, gestational age, gestational weight, and smoking have been 
other relevant factors affecting the value of the tree markers and the associated 
risk. Maternal age is the age of mother candidate at the beginning of preg
nancy. It is well established that the risk for DS increases with maternal age 
(Harris, Reed, and Vora n.d.). By the maternal age of 40, the risk of delivering 
an affected term newborn with DS is 1% (Skrzypek and Hui 2017). On the 
other hand, as a screening test it has poor performance alone (Norton and 
Rink 2016). If maternal age is included, the gestational age also needs to be 
specified (Benn 2016). Gestational age is the total duration that a baby has 
been in the uterus. It can be calculated using the current date and the patients 
estimated date of delivery. To compare individual results, values for AFP, 
HCG, and u-E3 were expressed as a multiple of the medians (MOM) for 
gestational age (Bar-Hava et al. 2001).

Studies show that there is also a significant relationship between the marker 
levels and the weight. At the beginning it was found that heavier pregnant 
women have lower median values of AFP due to larger blood volume 
(Crandall et al. 1983; Haddow et al. 1981). In another study, this relationship 
was obtained for all markers (Reynolds, Vranken, and Nueten 2006). Since 
weight is an important determinant of marker levels, obesity rises the risk of 
failure of noninvasive prenatal screening regardless of gestational age (Yared 
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et al. 2016). On the other hand, maternal weight adjustments can be used to 
correct the related problems (Wald et al. 1996).

Serum marker levels may be different in women who smoke and who do 
not (Wald et al. 1997). Therefore, smoking habits should be taken into 
account for risk assessment (Engels et al. 2014). Smoking significantly 
reduces median levels of uE3 and hCG while increasing the AFP (Zhang 
et al. 2011).

Multilayer Perceptron Models

Multilayer perceptron (MLP) is a feed forward artificial neural network model 
(Brasil, de Azevedo, and Barreto 2001) which provides the linkage between the 
sets of input data and a set of outputs (Aye and Heyns 2015). The neurons in 
MLP are interconnected in a one-way and one-directional fashion (Alameer 
et al. 2019). A classical MLP model has three kind of layers: an input layer, one 
or several hidden layers, and one output layer (Bienvenido-Huertas et al. 
2019b; West and West 2000). Particularly, each unit from one layer is con
nected with all the units from the following layer. The hidden layer processes 
and transmits the input information to the output layer (Orhan, Hekim, and 
Ozer 2011). The value of the response predicted by the model corresponds to 
the output of the neuron of the last layer. The output value is simply the sum of 
the values of the neurons of the previous layers which are weighted by synaptic 
weights and by using activation, transference, and propagation functions 
(Bienvenido-Huertas et al. 2019a). MLP learns the complexity of the data 
and optimizes the weights to minimize classification error (Mulongo et al. 
2019).

The MLPs are one of the well-known and widely applied artificial neural 
networks architectures with their capacities of universal approximation. We 
preferred the MLP neural network for this study since it produces highly 
accurate results particularly in problems requiring classification, recognition 
and generalization (Avuçlu and Başçiftçi 2018; Mukherjee 2018). MLPs have 
also certain advantages to map nonlinear relationships in the data (Güler et al. 
1998). Since the multilayer perceptron is used as a classifier, the attributes of 
the model will be our network inputs while the network outputs is the actual 
classes defined for the problem (Setsirichok et al. 2012).

Methods

Data Acquisition and Preprocessing

The data used in this study was obtained from Şahinbey Training and 
Research Hospital of Gaziantep University, which is managed by the antenatal 
care unit for the years between 2010 and 2016.
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Our purpose and data retrieval was approved by the local committee of 
ethics (Gaziantep University). The patient records and data were gathered 
from different departments of the hospital such as obstetrics and gynecology 
clinic, biochemistry laboratory, and molecular genetics laboratory of the 
hospital. Maternal serum samples that had AFP, hCG, uE3 levels, and mater
nal age, were taken from the triple screening test results saved by the biochem
istry laboratory. Since, the patients with higher risk of having a fetus with DS, 
are forwarded to amniocentesis, records of corresponding triple test results 
were matched by accessing the amniocentesis report of each patient from the 
molecular genetics laboratory.

At the beginning, we have obtained data of 6340 patients who had applied to 
obstetrics and gynecology clinic due to routine control of a fetus. 324 of these 
patients aborted, and 2815 of them were routed to have amniocentesis. To 
fulfill the main purpose of this analysis, a patient data must be complete (triple 
test and amniocentesis or birth should be performed at the same hospital to 
have the full record) to be considered in this study. We have checked each of 
patients who gives birth healthy/with DS and who had the amniocentesis by 
a patient number, file number and patient names. The remaining incomplete 
patient data was removed from the data set. The removed patients indicate 
that they have not visited the same hospital for all of the examinations during 
their pregnancy and births. After the removal, there were 81 full records which 
have the whole data including the genetic disorder status of babies. Seventy-six 
of them had no genetic disorder and 5 of them had trisomy 21 (DS).

Balancing of Imbalanced Data

Imbalanced data typically refer to a problem regarding the unequal represen
tation of classes. In our data set we have 5 records associated with Down 
syndrome and the remaining 76 as unaffected. Our minority class members 
are the records labeled with DS and our main objective is to predict the 
minority class in a high accuracy. However, the most of the well-known data 
mining algorithms becomes unattractive in case of imbalance in the data sets, 
as the distribution of the data sets is not taken into consideration when these 
algorithms are designed (Han, Wang, and Mao 2005). Specifically, the general
ization performance of MLPs trained with the unbalanced training subsets will 
be quite poor (Daqi, Chunxia, and Yunfan 2007). Many techniques have been 
developed to tackle the problem of imbalanced training sets. One of the widely 
applied balancing methodologies has been SMOTE. It considers each member 
from the minority class and generates new synthetic members along the lines 
between it and some of randomly selected its k nearest neighbors from the 
minority class (Abidine et al. 2014; Maciejewski and Stefanowski 2011).

SMOTE is widely applied since it can create new instances rather than 
replicate the existing instances (Jeatrakul, Wong, and Fung 2010). We have 

902 A. DURMUŞOĞLU ET AL.



also applied SMOTE algorithm to increase number of DS cases in our data set. 
The algorithm (Chawla et al. 2002) that is outlined below was implemented to 
our data set. As described, synthetic data records were generated by calculating 
the difference between minority sample and its nearest neighbors(He et al. 
2018). Subsequently, this difference was multiplied by a random number 
between 0 and 1, and was added to the feature vector under consideration. 
Thereby, random data points along the line segment between two specific 
features were generated. Oversampling amount (S) is a system parameter 
where different receiver operating characteristics (ROC) curves can be gener
ated. Area under the ROC curves is used to measure the performance of the 
classification problems. While ROC is a probability curve that indicates how 
much model is capable of distinguishing between classes, the higher area 
shows a better model that is predicting each of the class values. Therefore, 
an area of 1.0 represents a perfect accuracy for the given classification problem. 

Algorithm SMOTE (M, S, k)
Input:
Number of individuals in minority class: M;
Amount of SMOTE: S%;
Number of nearest neighbors: k
Output: (S/100)* M synthetic minority class members
1. if S < 100 (randomize the minority class members-SMOTE only a 

random percent of them)
2. then Randomize the M minority class members
3. M = (S/100)*M
4. S = 100
5. end if
6. S = (int)(S/100)(SMOTE amount is assumed to be in integral multiples of 

100)
7. k = Number of nearest neighbors
8. attrs = Number of attributes
9. Sample [][]: array for original minority class members
10. newind: number of synthetic samples generated, initialized to 0
11. Synthetic [][]:array for synthetic members(*Compute k nearest neigh

bors for each minority class sample only.*)
12. for i←1 to M
13. Compute k nearest neighbors for i, and save the indices in the nnarray
14. Populate (S, i, nnarray)
15. endfor
Populate (S, i, nnarray)(generate the synthetic members)
16. while S = 0
17. Let’s select a random number between 1 and k, call it nn. This step picks 

one of the k nearest neighbors of i.
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18. for attr←1 to attrs
19. Compute: dif = Sample[nnarray[nn]][attr]−Sample[i][attr]
20. Compute: gap = a random value between 0 and 1
21. Synthetic[newind][attr] = Sample[i][attr]+gap*dif
22. endfor
23. newind++
24. S = S − 1
25. endwhile
26. return (*End of Populate.*)
End of Pseudo-Code.

In this respect, we over-sampled our data set at 100%, 200%, 300%, 400%, 
500%, 600%, 700%, 800%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, 
1500%, and 2000% of original size by using SMOTE algorithm. Amount of 
SMOTE (S) and its corresponding area under ROC curves was calculated as 
given at Table 1. The best ROC area was found at the amount of %900 SMOTE 
(0.897). For this setting, number of records labeled as DS increased to 50.

Algorithms Used in Classifying Data

We have implemented several different well-known algorithms (Lin, Ke, and 
Tsai 2017) to classify the fetus as with/without DS. The summary description 
of the classifiers is as follows.

ZeroR
The zero-rules classifier (0-R) is a classifier which assigns class of each sample 
member to the class with highest prior probability (Pota et al. 2015). 
Therefore, all instances are labeled with the mean (for a numeric class) or 
the mode (for a nominal class) of the dataset (Rani and Jyothi 2016). It is the 
most basic classification algorithm therefore; it is beneficial for determining 
a baseline performance to compare with other classifiers. In this study, we also 
use 0-R algorithm as the baseline model to make robust comparisons.

Table 1. Amount of SMOTE and area under the ROC curve.
Amount of SMOTE Area under ROC Curve Amount of SMOTE Area under ROC Curve

0 0.207 900* 0.897
100 0.424 1000 0.802
200 0.634 1100 0.838
300 0.765 1200 0.870
400 0.842 1300 0.848
500 0.783 1400 0.886
600 0.799 1500 0.843
700 0.825 2000 0.882
800 0.842

* The best percentage is given by ROC Area value
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K-nearest Neighbors
It is a simple algorithm which is regarded as one of the top 10 algorithms in 
data mining (Wu et al. 2008). It classifies new cases based on a similarity 
measure. It is widely used for classification. The classification starts with 
linking of the training dataset onto a one-dimensional distance space based 
on the calculated similarities. Subsequently, the most dominant or mean of the 
labels of the k nearest neighbors are labeled (Ertuğrul and Tağluk 2017).

Bayesian Network
A Bayesian network (BN) is a visual model that shows the joint distribution of 
a set of random variables in a form of a directed acyclic graph (DAG) (Fareh 
2019; Hwang, Boyle, and Banerjee 2019). Each node in a Bayesian network 
indicate propositional variables of interest and the links the informational or 
causal dependencies among the variables by calculating conditional probabil
ities of each node with its parents in the graph. The topology of a BN and the 
associated probabilistic relationships between variables are usually learned 
from data (Lin et al. 2019).

Naïve Bayesian
Naïve Bayesian (NB) algorithm is based on the Bayesian theorem with an 
assumption regarding the conditional independence of predictors (Diab and 
El Hindi 2017). The Naïve Bayes classifier intends to detect the class of data by 
a series of probabilistic values. The probability tests performed for the learning 
data and the new test data are activated according to the early obtained 
probability values and it is attempted to define which category of test data is 
given. In most of the time, real data sets fails to satisfy the condition of 
independence, despite the performance of the naïve Bayesian classifier is still 
very reasonable when compared to other classifiers (Wong 2012).

C4.5
C4.5 algorithm was proposed to overcome the limitations of the Iterative 
Dichotomiser 3 (ID3) algorithm. Mainly, all training patterns are fixed at 
root. These patterns are distributed based on features selected on an impurity 
function in recursive routine. Distribution lasts until all training patterns for 
a certain node is assigned to the similar class (Saeh et al. 2016). C4.5 uses an 
uncertainty (entropy) measure for a new split creation (Mantas, Abellán, and 
Castellano 2016).

Fisher Linear Discriminant Analysis (FLDA)
Although the method is simple, it produces good results in complex problems. 
FLDA is based on the search for a linear combination that best separates the 
variables between the two classes (targets). The method tests the ratio between 
within-group and between-group variance (Chen 2018). The ratio is calculated 
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to express separability of the particular variable. The higher ratio value indi
cates the higher separability.

Logistic Regression
Logistic regression (LR) has been one of the widely used tools to solve 
classification problems, has continuously received excessive attention of both 
researchers (Zhang, Xu, and Zhang 2019). LR measures the relationship 
between the defined dependent variable and independent variables by asses
sing probabilities using a logistic function (Khairunnahar et al. 2019). It is 
a linear probabilistic classifier that provides a linkage between an input vector 
and multiple hyperplanes where each corresponds to an individual class (Asif, 
Majid, and Anwar 2019).

Sequential Minimal Optimization (SMO)
SMO is an optimization algorithm used to train a support vector machine 
(SVM) on a data set. SVM is capable of finding a solution to a nonlinear low 
dimensional classification problem by projecting it into high dimensional 
space by constructing an optimal separating hyperplane between the posi
tive/negative classes with maximum margin (Hashmi et al. 2015). To define 
the maximum margin, it is necessary to maximize the width (w) of the 
margin. Also, “w” and “b” is found by solving the objective function, with 
using Quadratic Programming (QP). A solution of the QP problems is hard 
and it takes a long time. SMO can rapidly find a solution for the SVM QP 
problems without using extra matrix storage and numerical QP optimization 
steps at all.

Input Variables

The MLP model developed for this study employs three input variables that 
are AFP, hCG and uE3 to predict target class (as DS and DS free). We have not 
used the weight and gestational week attributes due to multiple missing values 
in the records. The training phase adjusts the internal weights to get as close as 
possible to the known classes values.

Determining the Number of the Hidden Layer

Optimizing the number of hidden layer neurons for establishing Feedforward 
Neural Networks (FNN’s) have been a difficult issue in the research area. On 
the other hand, the hidden neuron can affect the error on the nodes to which 
their output is linked (Sheela and Deepa 2013). In 2012, Hunter et al. (Hunter 
et al. 2012) developed a formula to be determine number of hidden layers in 
a proper NN architecture. This approach can be easily used in the absence of 
trial-and-error method and has generalization ability. The implemented 
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formula for neural network is N-1, where N is number of input neurons. In 
this respect, we have used two hidden layers in our model.

The Applied Multilayer Perceptron Model

The Waikato Environment for Knowledge Analysis (WEKA) software tool 
(Hall et al. 2009) was used to construct the classification models and to develop 
the Multilayer Perceptron Model. In the output, there are four sigmoid nodes. 
As illustrated in Figure 1, node 0 and node 1 are output nodes and node 2 and 
node 3 are hidden nodes.

Results

This section presents the obtained results of the proposed MLP and the other 
classification models employed. A comparison is provided between the MLP 
model and other classifiers that predict the existence of DS. For evaluation 
purpose, a k-fold cross-validation technique was selected. In cross-validation, 
the data are randomly partitioned into k subsets or folds (Juez-Gil et al. 2019). 
In this evaluation approach, predictive model is trained k times; at each of 

Figure 1. The structure of the proposed MLP model.
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these training stages, one fold is used as the test set and the remaining k-1 folds 
as training set. Each fold is allowed to be “test set” exactly once. Thereby, it is 
avoided to use test data for training purposes. Thus k-fold cross validation 
provides a better generalization of the model (Bustillo et al. 2011). The 
repetitions of tests by cross-validation ensure that the prediction errors are 
not randomly good or bad and they are an average of multiple runs. In this 
research, we have implemented a 10-fold cross-validation approach and 
repeated the classifiers 10 times and therefore; a result provided is an average 
of 100 runs.

The result sheet of the multilayer is as given at Table 2. Number of correctly 
classified instances are 112 and correct classification rate is 88.89%. Kappa 
value (0.7726) shows the good agreement between predicted and observed 
instances. Mean absolute error value and relative absolute error values are 
satisfactory. ROC area values indicate that accuracy of the classifier is above 
90%. RECALL is TP rate which means sensitivity, it shows how much of actual 
positives (DS) were predicted as positive. It is also named as detection rate and 
its value is 92% for this analysis.

Table 3 shows the average value of performance indicators (Percentage 
of Correctly Classified, Detection Rate, False Positive Rate, Area under 
ROC and F-Measure) which were calculated for each algorithm after 100 
runs. For comparison purposes, we have selected the 0-R as the base 
classifier and the performance of the other classifiers were compared 

Table 2. Results of the MLP model.
Sigmoid Node 0 Inputs Weights

Threshold 3.782
Node 2 −8.761
Node 3 −11.124

Sigmoid Node 1 Inputs Weights
Threshold −3.782

Node 2 8.761
Node 3 11.124

Sigmoid Node 2 Inputs Weights
Threshold −17.226

AFP −16.294
uE3 −3.310
hCG −7.596

Sigmoid Node 3 Inputs Weights
Threshold 16.372

AFP 15.535
uE3 12.241
hCG 0.272

10*10 Cross-Validation Summary
Correctly classified instances 112 (88.89%)
Kappa statistic 0.7726
Mean absolute error 0.1534
Relative absolute error 32.0168%
Total number of instances 126

TP Rate FP Rate Precision F-Measure ROC area Class
0.920 0.132 0.821 0.868 0.910 DS
0.868 0.180 0.943 0.904 0.910 DS Free

Weighted Avg. 0.889 0.100 0.895 0.890 0.910
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with 0-R. MLP has the highest correct classification rate (90%) among all 
classifiers considered.

SMO model has been the worst with 68.17% correct classification rate. 
Detection rate has been zero for the base classifier (0-R). It means that the 
base classifier did not predict any instances of DS class correctly. Therefore, all 
classifiers had a better result when compared to the 0-R. However, the best 
performance was obtained by Bayesian Network algorithm with 97%. The 
closest performance was of Naïve Bayes classifier.

False Positive Rate (FPR) indicates that a subject without a DS is 
misclassified as having DS aneuploidy. This might be costly in real life. 
The family is given a wrong information and there may be psychological 
results and may mislead family to an invasive test. Therefore the main 
objective is to minimize the FPR. As it can be seen from Table 3, MLP is 
the best performing classifier according to FPR measure. We can see that, 
the base classifier (0-R) has 0.0 FP rate while it classifies all instances as 
negative.

While ROC is a probability curve that indicates how much model is capable 
of distinguishing between classes, the higher area shows a better model that is 
predicting each of the class values. From the viewpoint of area under the ROC 
curves, Bayesian Network and Naïve Bayes classifiers has the best perfor
mance. Subsequently, MLP and k-NN classifiers have area of 0.93 which are 
also very close to 1 (perfect value).

In a statistical evaluation of classification, the F-measure is a harmonic 
mean of precision and recall. The perfect/best value of F-measure is 1 and 
the worst value is 0. Multilayer Perceptron had the best F-measure perfor
mance with 0.88 value.

Using several different performance criteria in a classification study, may 
not end up with a clear decision about the goodness of a classifier. In this 
respect, it is possible to weight each of criteria and summing them up to find 
a total performance score. We have negotiated with some experts from the 

Table 3. The performance of the classification algorithms.

Classifier
% Correctly 

Classified
% Detection 

Rate (DR)
% False Positive 

Rate (FPR)
Area Under 

ROC F Measure
Total Weighted 

Scores

Weights 35% 50% −40% 35% 30% 110,00
ZeroR 0,60 0,00 0,00 0,50 0,00 0,00
k-NN 0,86 0,92 0,17 0,90 0,85 87.8
Bayesian 

network
0.86 0.97* 0.21 0.93* 0.85 89.75

Naïve Bayes 0.81 0.96 0.28 0.92 0.81 83.15
C4.5 0.82 0.81 0.17 0.85 0.78 77.05
FLDA 0.68 0.74 0.36 0.78 0.65 54.7
Logistic 

regression
0.68 0.55 0.24 0.77 0.56 46.95

MLP 0.90* 0.94 0.13* 0.92 0.88* 93.4*
SMO 0.68 0.81 0.41 0.7 0.67 54,00

* The best value among the alternatives
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Gaziantep University Hospital and decided to weight each of the performance 
criteria as follows. The weight assigned to correct classification rate was 35, 
and it was 50 for the detection rate. The detection rate has been considered as 
the most important criteria for the study. The ROC area and F-measure 
criteria were weighted with 35 and 30 respectively. While value of a FPR 
measure is a negative indicator of performance −40 was used as weighting 
factor for the corresponding performance.

We have used the equation 1, to calculate the total score of perfor
mance the classifiers. This equation takes the base model (0-R) into 
consideration to show the relative performance of classification 
algorithm. 

X
xi ¼

X
ðxi � yiÞ � wi (1) 

where
x is the classifier,
y is the base classifier,
i is the criteria,
ðxi) is the value of the specified criterion of the particular classifier,
ðyi) is the value of specified criterion of the base classifier,
ðwi) is the weight of the specified criterion.
As a result, the best weighted total score was obtained by the Multilayer 

Perceptron algorithm with 94.24% detection rate and 13% false positive rate.

Discussion and Conclusion

Triple test has been a simple and affordable screening test to detect DS. 
However, the high false positive rate has been considerable issue for the test. 
Many patients are suggested to go for amniocentesis however most of them are 
found to be free of defect.

In this study, we have evaluated nine classifiers with dissimilar features 
related to DS occurrence. Using a total of three features obtained with the 
triple test, we obtained an AUC score of 0.92 using the MultiLayer Perceptron 
model. The MLP model produces promising results for estimating DS accord
ing to our findings. The present work suggests that MLP model can be 
considered an effective tool for the prediction of DS by using triple test values. 
Successful detection of the DS can decrease the number of patients routed to 
amniocentesis and thereby the physiological effects of waiting for a test result 
can be decreased for some patients. As a future implementation software 
devoted of risk calculation of pregnant women can be modified to calculate 
the risk by using MLP models.

910 A. DURMUŞOĞLU ET AL.



ORCID

Alptekin Durmuşoğlu http://orcid.org/0000-0001-9800-5747
Memet Merhad Ay http://orcid.org/0000-0002-6892-7924
Zeynep Didem Unutmaz Durmuşoğlu http://orcid.org/0000-0001-7891-3764

References

Abidine, M., B. Fergani, M. Oussalah, and L. Fergani. 2014. A new classification strategy for 
human activity recognition using cost sensitive support vector machines for imbalanced 
data. Kybernetes 43 (8):1150–64. doi:10.1108/K-07-2014-0138.

Alameer, Z., M. A. Elaziz, A. A. Ewees, H. Ye, and Z. Jianhua. 2019. Forecasting gold price 
fluctuations using improved multilayer perceptron neural network and whale optimization 
algorithm. Resources Policy 61:250–60. doi:10.1016/j.resourpol.2019.02.014.

Asif, A., M. Majid, and S. M. Anwar. 2019. Human stress classification using EEG signals in 
response to music tracks. Computers in Biology and Medicine 107:182–96. doi:10.1016/j. 
compbiomed.2019.02.015.

Autio, L., M. Juhola, and J. Laurikkala. 2007. On the neural network classification of medical 
data and an endeavour to balance non-uniform data sets with artificial data extension. 
Computers in Biology and Medicine 37 (3):388–97. doi:10.1016/j.compbiomed.2006.05.001.

Avuçlu, E., and F. Başçiftçi. 2018. New approaches to determine age and gender in image 
processing techniques using multilayer perceptron neural network. Applied Soft Computing 
70:157–68. doi:10.1016/j.asoc.2018.05.033.

Aye, S. A., and P. S. Heyns. 2015. Acoustic emission-based prognostics of slow rotating bearing 
using bayesian techniques under dependent and independent samples. Applied Artificial 
Intelligence 29 (6):563–96. doi:10.1080/08839514.2015.1038432.

Bar-Hava, I., M. Yitzhak, H. Krissi, M. Shohat, J. Shalev, B. Czitron, Z. Ben-Rafael, and 
R. Orvieto. 2001. Pregnancy: Triple-test screening in in vitro fertilization pregnancies. 
Journal of Assisted Reproduction and Genetics 18 (4):228–31. doi:10.1023/A:1009455912670.

Benn, P. 2016. Posttest risk calculation following positive noninvasive prenatal screening using 
cell-free DNA in maternal plasma. American Journal of Obstetrics and Gynecology 214 
(6):676.e1-676.e7. doi:10.1016/j.ajog.2016.01.003.

Bienvenido-Huertas, D., A. Pérez-Fargallo, R. Alvarado-Amador, and C. Rubio-Bellido. 2019a. 
Influence of climate on the creation of multilayer perceptrons to analyse the risk of fuel 
poverty. Energy and Buildings 198:38–60. doi:10.1016/j.enbuild.2019.05.063.

Bienvenido-Huertas, D., C. Rubio-Bellido, J. L. Pérez-Ordóñez, and J. Moyano. 2019b. 
Optimizing the evaluation of thermal transmittance with the thermometric method using 
multilayer perceptrons. Energy and Buildings 198:395–411. doi:10.1016/j.enbuild.2019.06.040.

Brasil, L. M., F. M. de Azevedo, and J. M. Barreto. 2001. Hybrid expert system for decision 
supporting in the medical area: Complexity and cognitive computing. International Journal 
of Medical Informatics 63 (1):19–30. doi:10.1016/S1386-5056(01)00168-X.

Bustillo, A., E. Ukar, J. J. Rodriguez, and A. Lamikiz. 2011. Modelling of process parameters in 
laser polishing of steel components using ensembles of regression trees. International Journal 
of Computer Integrated Manufacturing 24 (8):735–47. doi:10.1080/0951192X.2011.574155.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic 
minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–57. 
doi:10.1613/jair.953.

Chen, B.-W. 2018. Incomplete data classification-fisher discriminant ratios versus welch dis
criminant ratios. Future Generation Computer Systems. doi:10.1016/j.future.2018.05.003.

APPLIED ARTIFICIAL INTELLIGENCE 911

https://doi.org/10.1108/K-07-2014-0138
https://doi.org/10.1016/j.resourpol.2019.02.014
https://doi.org/10.1016/j.compbiomed.2019.02.015
https://doi.org/10.1016/j.compbiomed.2019.02.015
https://doi.org/10.1016/j.compbiomed.2006.05.001
https://doi.org/10.1016/j.asoc.2018.05.033
https://doi.org/10.1080/08839514.2015.1038432
https://doi.org/10.1023/A:1009455912670
https://doi.org/10.1016/j.ajog.2016.01.003
https://doi.org/10.1016/j.enbuild.2019.05.063
https://doi.org/10.1016/j.enbuild.2019.06.040
https://doi.org/10.1016/S1386-5056(01)00168-X
https://doi.org/10.1080/0951192X.2011.574155
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.future.2018.05.003


Crandall, B. F., T. B. Lebherz, P. C. Schroth, and M. Matsumoto. 1983. Alpha-fetoprotein 
concentrations in maternal serum: Relation to race and body weight. Clinical Chemistry 29 
(3):531–33. doi:10.1093/clinchem/29.3.531.

Daqi, G., L. Chunxia, and Y. Yunfan. 2007. Task decomposition and modular single-hidden- 
layer perceptron classifiers for multi-class learning problems. Pattern Recognition 40 
(8):2226–36. doi:10.1016/j.patcog.2007.01.002.

Diab, D. M., and K. M. El Hindi. 2017. Using differential evolution for fine tuning naïve 
Bayesian classifiers and its application for text classification. Applied Soft Computing 
54:183–99. doi:10.1016/j.asoc.2016.12.043.

Driggers, R. W., and D. C. Seibert. 2008. Prenatal screening: New guidelines, new challenges. 
The Journal for Nurse Practitioners 4 (5):351–56. doi:10.1016/j.nurpra.2008.03.003.

Engels, M. A. J., S. L. Bhola, J. W. R. Twisk, M. A. Blankenstein, and J. M. G. van Vugt. 2014. 
Evaluation of the introduction of the national Down syndrome screening program in the 
Netherlands: Age-related uptake of prenatal screening and invasive diagnostic testing. 
European Journal of Obstetrics & Gynecology and Reproductive Biology 174 
(SupplementC):59–63. doi:10.1016/j.ejogrb.2013.12.009.

Ertuğrul, Ö. F., and M. E. Tağluk. 2017. A novel version of k nearest neighbor: Dependent 
nearest neighbor. Applied Soft Computing 55:480–90. doi:10.1016/j.asoc.2017.02.020.

Fareh, M. 2019. Modeling incomplete knowledge of semantic web using Bayesian networks. 
Applied Artificial Intelligence 33 (11):1022–34. doi:10.1080/08839514.2019.1661578.

Founds, S. 2014. Innovations in prenatal genetic testing beyond the fetal karyotype. Nursing 
Outlook 62 (3):212–18. doi:10.1016/j.outlook.2013.12.010.

Güler, E. Ç., B. Sankur, Y. P. Kahya, and S. Raudys. 1998. Visual classification of medical data 
using MLP mapping. Computers in Biology and Medicine 28 (3):275–87. doi:10.1016/S0010- 
4825(98)00010-9.

Haddow, J. E., E. M. Kloza, G. J. Knight, and D. E. Smith. 1981. Relation between maternal 
weight and serum alpha-fetoprotein concentration during the second trimester. Clinical 
Chemistry 27 (1):133–34. doi:10.1093/clinchem/27.1.133.

Haddow, J. E., G. E. Palomaki, G. J. Knight, J. Williams, A. Pulkkinen, J. A. Canick, D. N. Saller 
Jr, and G. B. Bowers. 1992. Prenatal screening for down’s syndrome with use of maternal 
serum markers. New England Journal of Medicine 327 (9):588–93. doi:10.1056/ 
NEJM199208273270902.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The 
WEKA data mining software: An update. SIGKDD Explorations Newsletter 11 (1):10–18. 
doi:10.1145/1656274.1656278.

Han, H., W.-Y. Wang, and B.-H. Mao. 2005. Borderline-SMOTE: A new over-sampling 
method in imbalanced data sets learning. In Advances in intelligent computing. Lecture 
notes in computer science, ed. D.-S. Huang, X.-P. Zhang, and G.-B. Huang, 878–87. Berlin 
Heidelberg: Springer.

Harris, S., D. Reed, and N. L. Vora. n.d. Screening for fetal chromosomal and subchromosomal 
disorders. Seminars in Fetal & Neonatal Medicine. doi:10.1016/j.siny.2017.10.006.

Hashmi, S., S. M. Halawani, O. M. Barukab, and A. Ahmad. 2015. Model trees and sequential 
minimal optimization based support vector machine models for estimating minimum sur
face roughness value. Applied Mathematical Modelling 39 (3):1119–36. doi:10.1016/j. 
apm.2014.07.026.

He, L., R. A. Levine, A. J. Bohonak, J. Fan, and J. Stronach. 2018. Predictive analytics machinery 
for STEM student success studies. Applied Artificial Intelligence 32 (4):361–87. doi:10.1080/ 
08839514.2018.1483121.

912 A. DURMUŞOĞLU ET AL.

https://doi.org/10.1093/clinchem/29.3.531
https://doi.org/10.1016/j.patcog.2007.01.002
https://doi.org/10.1016/j.asoc.2016.12.043
https://doi.org/10.1016/j.nurpra.2008.03.003
https://doi.org/10.1016/j.ejogrb.2013.12.009
https://doi.org/10.1016/j.asoc.2017.02.020
https://doi.org/10.1080/08839514.2019.1661578
https://doi.org/10.1016/j.outlook.2013.12.010
https://doi.org/10.1016/S0010-4825(98)00010-9
https://doi.org/10.1016/S0010-4825(98)00010-9
https://doi.org/10.1093/clinchem/27.1.133
https://doi.org/10.1056/NEJM199208273270902
https://doi.org/10.1056/NEJM199208273270902
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1016/j.siny.2017.10.006
https://doi.org/10.1016/j.apm.2014.07.026
https://doi.org/10.1016/j.apm.2014.07.026
https://doi.org/10.1080/08839514.2018.1483121
https://doi.org/10.1080/08839514.2018.1483121


Hunter, D., H. Yu III, M. S. P. Kolbusz, and B. M. Wilamowski. 2012. Selection of proper neural 
network sizes and architectures-A comparative study. IEEE Transactions on Industrial 
Informatics 8 (2):228–40. doi:10.1109/TII.2012.2187914.

Hwang, S., L. N. Boyle, and A. G. Banerjee. 2019. Identifying characteristics that impact motor 
carrier safety using Bayesian networks. Accident Analysis & Prevention 128:40–45. 
doi:10.1016/j.aap.2019.03.004.

Jeatrakul, P., K. W. Wong, and C. C. Fung. 2010. Classification of imbalanced data by 
combining the complementary neural network and SMOTE algorithm. In Neural informa
tion processing. Models and applications. Lecture notes in computer science, ed. K. W. Wong, 
B. S. U. Mendis, and A. Bouzerdoum, 152–59. Berlin Heidelberg: Springer.

Juez-Gil, M., I. N. Erdakov, A. Bustillo, and D. Y. Pimenov. 2019. A regression-tree 
multilayer-perceptron hybrid strategy for the prediction of ore crushing-plate lifetimes. 
Journal of Advanced Research 18:173–84. doi:10.1016/j.jare.2019.03.008.

Kaur, G., J. Srivastav, S. Sharma, A. Huria, P. Goel, and B. S. Chavan. 2013. Maternal serum 
median levels of alpha-foetoprotein, human chorionic gonadotropin & unconjugated estriol 
in second trimester in pregnant women from north-west India. The Indian Journal of 
Medical Research 138 (1):83–88.

Khairunnahar, L., M. A. Hasib, R. H. B. Rezanur, M. R. Islam, and M. K. Hosain. 2019. 
Classification of malignant and benign tissue with logistic regression. Informatics in 
Medicine Unlocked 16:100189. doi:10.1016/j.imu.2019.100189.

Lin, S., Q. Zhang, F. Chen, L. Luo, L. Chen, and W. Zhang. 2019. Smooth Bayesian network 
model for the prediction of future high-cost patients with COPD. International Journal of 
Medical Informatics 126:147–55. doi:10.1016/j.ijmedinf.2019.03.017.

Lin, W.-C., S.-W. Ke, and C.-F. Tsai. 2017. Top 10 data mining techniques in business 
applications: A brief survey. Kybernetes 46 (7):1158–70. doi:10.1108/K-10-2016-0302.

Maciejewski, T., and J. Stefanowski, 2011. Local neighbourhood extension of SMOTE for 
mining imbalanced data. 2011 IEEE Symposium on Computational Intelligence and Data 
Mining (CIDM), Paris, 104–11, April. doi: 10.1109/CIDM.2011.5949434.

Mantas, C. J., J. Abellán, and J. G. Castellano. 2016. Analysis of Credal-C4.5 for classification in 
noisy domains. Expert Systems with Applications 61:314–26. doi:10.1016/j.eswa.2016.05.035.

Mukherjee, S. 2018. Malignant mesothelioma disease diagnosis using data mining techniques. 
Applied Artificial Intelligence 32 (3):293–308. doi:10.1080/08839514.2018.1451216.

Muller, F., D. Thibaud, F. Poloce, M.-C. Gelineau, M. Bernard, C. Brochet, C. Millet, J.-Y. Réal, 
and M. Dommergues. 2002. Risk of amniocentesis in women screened positive for Down 
syndrome with second trimester maternal serum markers. Prenatal Diagnosis 22 
(11):1036–39. doi:10.1002/pd.449.

Mulongo, J., M. Atemkeng, T. Ansah-Narh, R. Rockefeller, G. M. Nguegnang, and M. A. Garuti. 
2019. Anomaly detection in power generation plants using machine learning and neural 
networks. Applied Artificial Intelligence 1–16. doi:10.1080/08839514.2019.1691839.

Neocleous, A. C., K. H. Nicolaides, and C. N. Schizas. 2016. First trimester noninvasive 
prenatal diagnosis: A computational intelligence approach. IEEE Journal of Biomedical 
and Health Informatics 20 (5):1427–38. doi:10.1109/JBHI.2015.2462744.

Norton, M. E., and B. D. Rink. 2016. Changing indications for invasive testing in an era of 
improved screening. Seminars in Perinatology 40 (1):56–66. doi:10.1053/j.semperi.2015.11.008.

Ökem, Z. G., G. Örgül, B. T. Kasnakoglu, M. Çakar, and M. S. Beksaç. 2017. Economic analysis of 
prenatal screening strategies for Down syndrome in singleton pregnancies in Turkey. European 
Journal of Obstetrics & Gynecology and Reproductive Biology 219 (SupplementC):40–44. 
doi:10.1016/j.ejogrb.2017.09.025.

APPLIED ARTIFICIAL INTELLIGENCE 913

https://doi.org/10.1109/TII.2012.2187914
https://doi.org/10.1016/j.aap.2019.03.004
https://doi.org/10.1016/j.jare.2019.03.008
https://doi.org/10.1016/j.imu.2019.100189
https://doi.org/10.1016/j.ijmedinf.2019.03.017
https://doi.org/10.1108/K-10-2016-0302
https://doi.org/10.1109/CIDM.2011.5949434
https://doi.org/10.1016/j.eswa.2016.05.035
https://doi.org/10.1080/08839514.2018.1451216
https://doi.org/10.1002/pd.449
https://doi.org/10.1080/08839514.2019.1691839
https://doi.org/10.1109/JBHI.2015.2462744
https://doi.org/10.1053/j.semperi.2015.11.008
https://doi.org/10.1016/j.ejogrb.2017.09.025


Orhan, U., M. Hekim, and M. Ozer. 2011. EEG signals classification using the K-means 
clustering and a multilayer perceptron neural network model. Expert Systems with 
Applications 38 (10):13475–81. doi:10.1016/j.eswa.2011.04.149.

Paiva, J. S., J. Cardoso, and T. Pereira. 2018. Supervised learning methods for pathological 
arterial pulse wave differentiation: A SVM and neural networks approach. International 
Journal of Medical Informatics 109:30–38. doi:10.1016/j.ijmedinf.2017.10.011.

Phillips, O. P., S. Elias, L. P. Shulman, R. N. Andersen, C. D. Morgan, and J. L. Simpson. 1992. 
Maternal serum screening for fetal down syndrome in women less than 35 years of age using 
alpha-fetoprotein, hCG, and unconjugated estriol: A prospective 2-year study. Obstetrics and 
Gynecology 80 (3):353.

Pota, M., E. Scalco, G. Sanguineti, G. M. Cattaneo, M. Esposito, and G. Rizzo. 2015. Early 
classification of parotid glands shrinkage in radiotherapy patients: A comparative study. 
Biosystems Engineering 138:77–89. doi:10.1016/j.biosystemseng.2015.06.007.

Rani, A. S., and S. Jyothi, 2016. Performance analysis of classification algorithms under 
different datasets. 2016 3rd International Conference on Computing for Sustainable Global 
Development (INDIACom), New Delhi, 1584–89, March 2.

Reynolds, T. M., G. Vranken, and J. V. Nueten. 2006. Weight correction of MoM values: Which 
method? Journal of Clinical Pathology 59 (7):753–58. doi:10.1136/jcp.2005.034280.

Saeh, I. S., M. W. Mustafa, Y. S. Mohammed, and M. Almaktar. 2016. Static security classifica
tion and evaluation classifier design in electric power grid with presence of PV power plants 
using C4.5. Renewable and Sustainable Energy Reviews 56:283–90. doi:10.1016/j. 
rser.2015.11.054.

Setsirichok, D., T. Piroonratana, W. Wongseree, T. Usavanarong, N. Paulkhaolarn, 
C. Kanjanakorn, M. Sirikong, C. Limwongse, and N. Chaiyaratana. 2012. Classification of 
complete blood count and haemoglobin typing data by a C4.5 decision tree, a naïve Bayes 
classifier and a multilayer perceptron for thalassaemia screening. Biomedical Signal 
Processing and Control 7 (2):202–12. doi:10.1016/j.bspc.2011.03.007.

Shaw, S. W. S., C.-P. Chen, and P.-J. Cheng. 2013. From Down syndrome screening to 
noninvasive prenatal testing: 20 years’ experience in Taiwan. Taiwanese Journal of 
Obstetrics & Gynecology 52 (4):470–74. doi:10.1016/j.tjog.2013.10.003.

Sheela, K. G., and S. N. Deepa. 2013. Review on methods to fix number of hidden neurons in 
neural networks. Mathematical Problems in Engineering 2013:1–11. doi:10.1155/2013/ 
425740.

Shurtz, I., A. Brzezinski, and A. Frumkin. 2016. The impact of financing of screening tests on 
utilization and outcomes: The case of amniocentesis. Journal of Health Economics 48 
(SupplementC):61–73. doi:10.1016/j.jhealeco.2016.02.001.

Skrzypek, H., and L. Hui. 2017. Noninvasive prenatal testing for fetal aneuploidy and single 
gene disorders. Best Practice & Research. Clinical Obstetrics & Gynaecology 42 
(SupplementC):26–38. doi:10.1016/j.bpobgyn.2017.02.007.

Tamminga, S., M. van Maarle, L. Henneman, C. B. M. Oudejans, M. C. Cornel, and 
E. A. Sistermans. 2016. Maternal plasma DNA and RNA sequencing for prenatal testing. 
In Advances in clinical chemistry 74, 63–102. Elsevier. doi:10.1016/bs.acc.2015.12.004.

Temming, L. A., and G. A. Macones. 2016. What is prenatal screening and why to do it? 
Seminars in Perinatology 40 (1):3–11. doi:10.1053/j.semperi.2015.11.002.

Wald, N. J., J. W. Densem, L. George, S. Muttukrishna, and P. G. Knight. 1996. Prenatal 
screening for Down’s syndrome using inhibin-a as a serum marker. Prenatal Diagnosis 16 
(2):143–53. doi:10.1002/(SICI)1097-0223(199602)16:2<143::AID-PD825>3.0.CO;2-F.

Wald, N. J., J. W. Densem, D. Smith, and G. G. Klee. 1994. Four-marker serum screening for 
Down’s syndrome. Prenatal Diagnosis 14 (8):707–16. doi:10.1002/pd.1970140810.

914 A. DURMUŞOĞLU ET AL.

https://doi.org/10.1016/j.eswa.2011.04.149
https://doi.org/10.1016/j.ijmedinf.2017.10.011
https://doi.org/10.1016/j.biosystemseng.2015.06.007
https://doi.org/10.1136/jcp.2005.034280
https://doi.org/10.1016/j.rser.2015.11.054
https://doi.org/10.1016/j.rser.2015.11.054
https://doi.org/10.1016/j.bspc.2011.03.007
https://doi.org/10.1016/j.tjog.2013.10.003
https://doi.org/10.1155/2013/425740
https://doi.org/10.1155/2013/425740
https://doi.org/10.1016/j.jhealeco.2016.02.001
https://doi.org/10.1016/j.bpobgyn.2017.02.007
https://doi.org/10.1016/bs.acc.2015.12.004
https://doi.org/10.1053/j.semperi.2015.11.002
https://doi.org/10.1002/(SICI)1097-0223(199602)16:2%3C143::AID-PD825%3E3.0.CO;2-F
https://doi.org/10.1002/pd.1970140810


Wald, N. J., A. Kennard, A. Hackshaw, and A. McGuire. 1997. Antenatal screening for Down’s 
syndrome. Journal of Medical Screening 4 (4):181–246. doi:10.1177/096914139700400402.

West, D., and V. West. 2000. Improving diagnostic accuracy using a hierarchical neural 
network to model decision subtasks. International Journal of Medical Informatics 57 
(1):41–55. doi:10.1016/S1386-5056(99)00059-3.

Witters, I., E. Legius, K. Devriendt, P. Moerman, D. V. Schoubroeck, A. V. Assche, and J.- 
P. Fryns. 2001. Pregnancy outcome and long term prognosis in 868 children born 
after second trimester amniocentesis for maternal serum positive triple test screening and 
normal prenatal karyotype. Journal of Medical Genetics 38 (5):336–38. doi:10.1136/ 
jmg.38.5.336.

Wong, -T.-T. 2012. A hybrid discretization method for naïve Bayesian classifiers. Pattern 
Recognition 45 (6):2321–25. doi:10.1016/j.patcog.2011.12.014.

Wu, X., V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, 
B. Liu, P. S. Yu, et al. 2008. Top 10 algorithms in data mining. Knowledge and Information 
Systems 14 (1):1–37. doi:10.1007/s10115-007-0114-2.

Yagel, S., E. Y. Anteby, D. Hochner-Celnikier, I. Ariel, T. Chaap, and Z. B. Neriah. 1998. The 
role of midtrimester targeted fetal organ screening combined with the “triple test” and 
maternal age in the diagnosis of trisomy 21: A retrospective study. American Journal of 
Obstetrics and Gynecology 178 (1, Part 1):40–44. doi:10.1016/S0002-9378(98)70623-4.

Yared, E., M. J. Dinsmoor, L. K. Endres, M. J. Vanden Berg, C. J. Maier Hoell, B. Lapin, and 
B. A. Plunkett. 2016. Obesity increases the risk of failure of noninvasive prenatal screening 
regardless of gestational age. American Journal of Obstetrics and Gynecology 215 (3):370.e1- 
370.e6. doi:10.1016/j.ajog.2016.03.018.

Zhang, C.-X., S. Xu, and J.-S. Zhang. 2019. A novel variational Bayesian method for variable 
selection in logistic regression models. Computational Statistics & Data Analysis 133:1–19. 
doi:10.1016/j.csda.2018.08.025.

Zhang, J., G. Lambert-Messerlian, G. E. Palomaki, and J. A. Canick. 2011. Impact of smoking 
on maternal serum markers and prenatal screening in the first and second trimesters. 
Prenatal Diagnosis 31 (6):583–88. doi:10.1002/pd.2755.

APPLIED ARTIFICIAL INTELLIGENCE 915

https://doi.org/10.1177/096914139700400402
https://doi.org/10.1016/S1386-5056(99)00059-3
https://doi.org/10.1136/jmg.38.5.336
https://doi.org/10.1136/jmg.38.5.336
https://doi.org/10.1016/j.patcog.2011.12.014
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/S0002-9378(98)70623-4
https://doi.org/10.1016/j.ajog.2016.03.018
https://doi.org/10.1016/j.csda.2018.08.025
https://doi.org/10.1002/pd.2755

	Abstract
	Introduction
	Markers of Triple Test
	Multilayer Perceptron Models

	Methods
	Data Acquisition and Preprocessing
	Balancing of Imbalanced Data
	Algorithms Used in Classifying Data
	ZeroR
	K-nearest Neighbors
	Bayesian Network
	Naïve Bayesian
	C4.5
	Fisher Linear Discriminant Analysis (FLDA)
	Logistic Regression
	Sequential Minimal Optimization (SMO)

	Input Variables
	Determining the Number of the Hidden Layer
	The Applied Multilayer Perceptron Model

	Results
	Discussion and Conclusion
	ORCID
	References

