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Abstract
The measurement of trace moisture is important in industry to maintain the quality and yield of
products, such as semiconductors, lithium-ion batteries, and organic electroluminescence
devices. In the field, on-site calibration of a trace moisture analyzer is required to maintain its
reliability. Given these circumstances, we previously developed a ball surface acoustic wave
(SAW) sensor using SAW on spherical piezoelectric elements and reported its quick response as
its advantage over other trace moisture analyzers. However, the ultimately short response time
of less than 1 s has not been verified, and it has not yet been calibrated on-site. In this study, we
developed a system for the injection of saturated water vapor to evaluate the quick response of a
trace moisture analyzer, and we verified the quick response time of as short as 0.64 s. It is the
shortest response time reported so far. In addition, to realize its on-site calibration, we
developed a dynamic calibration method, which takes only 10 min, by the injection of saturated
water vapor, in contrast to the presently available static calibration method that takes 10 h. Since
this system consists of simple components, it can be downsized. Moreover, because it uses a
small amount of saturated water vapor as the calibration gas, it is easy to prepare calibration
gases in the field and may be applied to on-site calibration.

Supplementary material for this article is available online
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1. Introduction

In the manufacturing of semiconductors and materials that
react easily with water, such as lithium-ion batteries and

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

organic electroluminescence, trace levels of moisture can
seriously degrade device yields and performance [1–5]. There-
fore, various types of trace moisture analyzer [6] are used for
monitoring the trace moisture in process gases. However, they
have a problem in response time, and a quick response time of
less than 1 s has not been reported. In addition, on-site calibra-
tion is required to maintain the reliability of the products in the
field. Generally, the calibration is performed where the sensor
response to trace moisture has reached a sufficient equilibrium
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by maintaining the moisture concentration in the sensor cell
for several hours. However, while such a static calibration
method enables accurate calibration, it is difficult to apply it to
on-site calibration because the calibration system is huge and
the calibration takes as long as 10 h.

On the other hand, on the basis of a finding of a surface
acoustic wave (SAW) that makes multiple roundtrips on spher-
ical piezoelectric elements [7, 8], we have developed a ball
SAW sensor [9–19] and applied it to a trace moisture analyzer
with a sol–gel silica-based sensitive film [20–23]. Although
conventional SAW sensors require a thick sensitive film to
achieve high sensitivity [24], a ball SAW sensor achieves high
sensitivity owing to its large propagation length realized by
multiple roundtrips of the SAW, and a thin sensitive film can be
employed. Since a thin sensitive film immediately equilibrates
to the concentration of an ambient gas, it can respond quickly.
We have reported the quick response of the ball SAW sensor as
its advantage over other trace moisture analyzers [20, 21, 23].
However, its ultimately short response time of less than 1 s
has not yet been verified. In addition, similarly to other trace
moisture analyzers, the ball SAW trace moisture analyzer has
not been calibrated on-site.

In this work, we developed a system for the injection of sat-
urated water vapor, which enables the evaluation of the quick
response of a trace moisture analyzer and on-site calibration.
Using this system, we evaluated the response time of a ball
SAW tracemoisture analyzer and demonstrated a dynamic cal-
ibrationmethod that can be performed in as short as 10min and
is applicable to on-site calibration.

2. Static calibration method

2.1. Static calibration system

Figure 1(a) shows a schematic diagram of the static calibration
system. The calibration gas is prepared by two-step dilution of
saturated water vapor generated in a saturator. The saturator is
controlled at the pressure of 400 kPa and the temperature of
25 ◦C. First, the flow ratio between wet gas passing through
the saturator and dry gas is controlled by amass flow controller
(MFC) 1 andMFC 2 to dilute the wet gas in the range of 1–200
times. Next, the diluent gas is further diluted in the range of 1–
200 times by MFC 3 and MFC 4. Then, the conditioned gas is
introduced into a sensor cell at a flow rate controlled by MFC
5. Here, the pressure in the sensor cell is 100 kPa. The flow
rate of gas passing through MFC 3 should not be larger than
total amount of gas passing through MFC 1 and MFC 2, and
the excess gas is exhausted by an automatic pressure regulator
(APR) 1. Similarly, the flow rate of gas passing through MFC
5 should not be larger than total amount of gas passing through
MFC 3 and MFC 4, and the excess gas is exhausted by APR 2.
In this way, this system can change the moisture concentration
around the sensor and calibrate in the range of frost point from
−87 to 4 ◦C.

Figure 1(b) is an example of the ball SAW sensor response
when the moisture concentration is changed stepwise using
this system. This graph shows the temporal variation of the
attenuation α as the response of the ball SAW sensor in 10 h

Figure 1. Static calibration method. (a) Schematic diagram of static
calibration system. (b) Sensor response during static calibration.

when the moisture concentration evaluated as the frost point
(FP) was changed in steps from−76 ◦C to−17 ◦C. From this
data, a calibration curve of the relationship between the FP and
the attenuation α can be obtained.

2.2. Result of static calibration

In figure 2(a), the relationships between the FP and the atten-
uation α of the ball SAW sensor obtained by the static calib-
ration system are plotted as open circles. Here, we found that
the relationship indicated as a dotted curve can be expressed
as a function of α given by

FP= Aα+B− 10Cα+D, (1)

where A, B, C, andD are coefficients, which are characteristics
of each sensor. That is, the calibration of the ball SAW sensor
means the determination of these coefficients. When the FP is
above−25 ◦C, the FP can be approximated to be almost linear
to α neglecting the exponential term of equation (1) as

FP= Aα+B. (2)

Therefore, the coefficients A and B can be determined by a
least squares fitting of the data in the high concentration range.
Furthermore, equation (1) can be transformed to

log10 (Aα+B−FP) = Cα+D, (3)

expressing the exponential term of equation (1) as a lin-
ear function. Figure 2(b) shows the relationship between α
and the values on the left-hand side of equation (3) using
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Figure 2. Calibration curve of ball SAW sensor. (a) Relationship
between attenuation of SAW (α) and frost point (FP).
(b) Relationship between α and FP in the low concentration range
determined using equation (3).

data in the low FP range. Therefore, the coefficients C and
D can be determined by a least squares fitting. By using
these coefficients, we can obtain the calibration curve for this
sensor as

FP= 1.279α− 182.8− 10−0.1776α+21.56. (4)

Furthermore, since it was found that each coefficient is
almost linear to the sensor temperature near room temperature,
it can be expressed by a linear function of the sensor temperat-
ure. Therefore, the coefficients for temperature compensation

Figure 3. Schematic diagram of system for evaluation of quick
response and for dynamic calibration.

can be determined by fitting each coefficient from the rela-
tionship between the FP and the attenuation by changing the
sensor temperature. In this paper, since the measurement was
performed at a constant temperature, the explanation for the
coefficient related to temperature compensation is omitted.

3. Measurement of quick response of the ball SAW
trace moisture analyzer

3.1. System for evaluation of quick response and dynamic
calibration

A schematic diagram of the system we developed is shown in
figure 3. This system is composed of a saturated water vapor
generator and a flow-controlled gas line leading to a mois-
ture sensor. This line has an inlet to inject saturated water
vapor upstream of the sensor. When the saturated water vapor
is injected, the water vapor is carried to the moisture sensor
by diffusion and drifting through the piping, and a sensor
response is obtained, which varies with time owing to the
change in moisture concentration.

As a saturated water vapor generator, we use a sampling gas
bag for gas analysis, whose inner surface was inactivated, as
shown in figure 4(a). The size of the gas bag is 1 l. After pur-
ging the gas bag with nitrogen gas, pure water is injected into
the bag and the bag is saturated with water vapor at room tem-
perature controlled by an air conditioner. As an injector, we
use a gas-tight syringe, with which we can control the injection
volume using its scale. The saturated water vapor is extracted
from the gas bag and injected into the inlet provided 170 mm
upstream of the ball SAW sensor connected to the nitrogen
pipe by manual operation of the gas-tight syringe. The dry
nitrogen gas line is shown in figure 4(b). The sensor is in a
small cell whose volume is 1.4 ml. The nitrogen gas flow is
controlled using a mass flow controller. This injection is used
both for the evaluation of response time and for a dynamic cal-
ibration, which will be described in section 4.

3.2. Evaluation of response time

We installed a ball SAW sensor into the system we developed
and measured the attenuation by injecting saturated water
vapor. The injection volume was 1 ml and the flow rate of
the background gas was 100 ml min−1. At this time, the room
temperature was 21.6 ◦C. Response time was evaluated as the

3
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Figure 4. Dynamic calibration system. (a) Gas bag for saturated
water vapor generator and gas-tight syringe as the injector. (b) Dry
nitrogen gas line.

Figure 5. Quick response of ball SAW trace moisture analyzer.
(a) Temporal variation of FP measured by ball SAW trace moisture
analyzer. (b) Expanded view of peak. (c) Video (supplemental data
stacks.iop.org/MST/31/094003/mmedia).

timewithinwhich a 10%–90% increase in the FPwas observed
after the injection of saturated water vapor.

Figure 5(a) shows a temporal variation of the FP due to
the injection of saturated water vapor measured using the
ball SAW sensor. The FP increased immediately after injec-
tion and then decreased gradually. The decrease took about
10 min and is considered to represent a process at which the
water adsorbed on the pipe surface was gradually desorbed.
The expanded view of the peak is shown in figure 5(b). The
response time taken for 10%–90% of the FP change from
−70 ◦C to 10 ◦C was only 0.64 s. It is considered to be the
shortest response time of the trace moisture analyzer reported
so far.

Figure 6. Reference data for dynamic calibration. (a) Temporal
variation of attenuation of SAW after injection of saturated water
vapor and (b) the relationship between FP and time calculated using
equation (4).

Furthermore, since the response time is less than 1 s, it can
be regarded that the equilibrium between the water concen-
tration within the sensitive film and that in the atmosphere is
rapidly reached at any instance of the dynamic calibration pro-
cess, which takes 10 min. This rapid equilibrium is the basis
for the validity of the dynamic calibration process.

4. Dynamic calibration method

4.1. Procedure of dynamic calibration

First, to obtain a reference data for dynamic calibration, we
install a ball SAW sensor calibrated by the static method
described in section 2 into the developed system and meas-
ure the temporal variation of the attenuation by the injection
of saturated water vapor. The temporal variation of the FP can
be obtained by substituting the attenuation α at each time in
equation (4).

Next, the ball SAW sensor is replaced with a new sensor
to be calibrated, and the temporal variation of the attenuation
α is measured for 10 min under the same conditions as when
the reference data was measured. The calibration curve of this
sensor is derived as the relationship between the attenuation
α and the FP of the reference data at the same time. Finally,
the sensor is calibrated again by the static method and the cal-
ibration curve obtained is compared with that obtained by the
dynamic calibration method.

4.2. Measurement result of dynamic calibration

The measurement result for the reference data is shown in
figure 6 at a background gas flow rate of 10 ml min−1, a satur-
ated water vapor injection volume of 1 ml, and a room temper-
ature of 21 ◦C. From the temporal variation of the attenuation
α after the injection of saturated water vapor, as shown in fig-
ure 6(a), that of FP was obtained using the calibration curve
obtained using equation (4), as shown in figure 6(b). Since the
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Figure 7. Procedure of dynamic calibration. (a) Reference data and
response of new sensor. (b) Relationship between attenuation and
frost point in high concentration range. (c) Relationship between
attenuation and left-hand-side of equation (3) in low concentration
range.

rising part of the peak changes rapidly, it is not used for the cal-
ibration, and the gradually decreasing part of the curve shown
in red is used as reference data.

The attenuation α of a new sensor under the same condi-
tion as the measurement for the reference data is shown by the
black curve in figure 7(a). Using the reference data shown by
the red curve at the same time, we obtained the FP at the right
axis. Figure 7(b) shows the relationship between the attenu-
ation α and the FP in the high concentration range as shown
by closed circles. Since this relationship is almost linear, the
coefficients of calibration curves A and B were determined to
be A = 1.188 and B = −94.41 by a least squares fitting. On
the other hand, figure 7(c) shows the relationship between the
attenuationα and the function on the left-hand side of equation
(3) in the low concentration range as shown by open circles.
Since this relationship is also linear, coefficients C andDwere
determined to be C = −0.1983 and D = 11.88 by a least
squares fitting. Therefore, the calibration curve of this sensor
obtained by the dynamic calibration method is given by

FP= 1.188α− 94.41− 10−0.1983α+11.88. (5)

On the other hand, the calibration curve of the same sensor
obtained by the static calibration method is given by

FP= 1.257α− 101.3− 10−0.1994α+11.86. (6)

Figure 8. Calibration curves obtained by dynamic calibration and
static calibration.

In figure 8, the result of dynamic calibration curve using equa-
tion (5) is shown as a solid curve and that of the static calibra-
tion curve using equation (6) is shown as a dotted curve. These
two curves look nearly identical.

5. Discussion

We evaluated the measurement error of FP obtained by the
static and dynamic calibration methods. Figure 9 shows the
error between the set FP and themeasured FP calculated by the
substitution of the attenuation α into each calibration curve.
The horizontal axis shows the set FP and the vertical axis
shows the measured FP. If there is no error, the measured FP
should be plotted on the 45◦ line shown by the dotted line.
Closed circles show results obtained by the dynamic calibra-
tion and open circles show those obtained by the static calibra-
tion. In the FP range from−59 ◦C to−17 ◦C, the RMS errors
of the static and dynamic calibration methods were 0.88 ◦C
and 2.12 ◦C, respectively.

The RMS error of 2.12 ◦C of the dynamic calibration in
the FP range from −59 ◦C to −17 ◦C may not be small for
accurate calibration. However, the dynamic calibration will
be useful for a rough estimate of the sensor condition in the
field checking whether the sensor response has changed signi-
ficantly. Since this error is considered to be the accumulation
of errors in the calibration curve obtained using equation (4)
acquired as the reference data, errors in the amount of injected
saturated water vapor as the calibration gas, and subtle dif-
ferences in temperature and atmospheric pressure, it can be
reduced by improving the system components.

In this study, we used dry nitrogen as a background gas
for the dynamic calibration system. However, when calibrat-
ing a sensor used in an environment other than nitrogen, it
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Figure 9. Relationship between set FP and measured FP
determined using each calibration curve.

is necessary to use the same type of dry gas as that environ-
ment. Also, the reference data used for the dynamic calibra-
tion must be obtained under the same background gas. This
is because the diffusion of the injected saturated water vapor
changes depending on the background gas.

The dynamic calibration system developed in this study has
a significant advantage of having a measurement time as short
as 10 min, in contrast to the 10 h measurement time of the
static calibration [22]. Since it consists of simple components,
it is possible to downsize the calibration system and apply it
to on-site calibration. In addition, since it uses a small amount
of saturated water vapor as the calibration gas, it is easy to
prepare calibration gases in the field and may be applied to
special gases for which calibration gases are not easy to obtain
in large amounts. Furthermore, this system can be applied to
not only ball SAW sensors, but also the calibration of trace
moisture analyzers with a quick response.

6. Conclusion

We developed a system and method for the evaluation of the
quick response of a trace moisture analyzer and for dynamic
calibration using saturated water vapor. We installed a ball
SAW sensor in this system and measured the temporal vari-
ation of the attenuation after the injection of saturated water
vapor. The 10%–90% response time for the FP change from
−70 ◦C to 10 ◦C was only 0.64 s when the flow rate of the
background gas was 100 ml min−1. It is the shortest response
time of a trace moisture analyzer reported so far. On the basis
of this quick response enabling the rapid equilibrium of water
concentration, the dynamic calibration of the ball SAW sensor
was performed using this system. In a 10 min measurement,
which is much shorter than the 10 h of the static calibration,
we succeeded in calibrating the sensor with the RMS error of
2.12 ◦C in the FP range of −59 ◦C to −17 ◦C. Therefore, this

system can be applied to the on-site calibration of a trace mois-
ture analyzer in the field.
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