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ABSTRACT 
 

Emerging technologies include remote sensing, global positioning systems (GPS), geographic 
information systems (GIS), and the Internet of Things. The Internet of Things (IoT), Big Data 
analysis, and artificial intelligence (AI) are all the promising tools that are being used to solve 
complications, improve agricultural operations, and reduce expenses. Satellite remote sensing has 
been indispensable in understanding Earth and atmospheric dynamics over the last five decades. 
When compared to ground or aerial sensor acquisitions, satellite sensors have the ability to 
provide data at global sizes at a lower cost. With the support of satellite remote sensing, the 
scientific community has attained significant progress in recent years. In consideration of these 
efforts, the current study is intended to provide a comprehensive review of the function of remote 
sensing in assessing different water security challenges and other purposes. Crop production 
forecasting, drought assessment, cropping system analysis, horticultural assessment and 
development, crop development, thorough site analysis, satellite agro-meteorology, precision 
farming, crop insurance, and other operational big agricultural applications are examples. This 
research examines various uses as well as potential gaps in the market. 

Review Article 
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1. INTRODUCTION 
 

Agriculture supplies nutritious food that are 
important for survival in both underdeveloped 
and developed countries [1,2]. "The world's 
population is predicted to double by 2050," 
according to the World Summit on Food Security. 
In comparing to 2013, growing economies will 
increase agriculture demand by almost 50% [3]. 
Many technological advances, such as the Green 
Revolution, have changed the face of agriculture 
over the last century [4]. During the 1960s–
1980s, the third agricultural revolution, known as 
the Green Revolution, was defined by high yield 
crop types, the use of synthetic fertilisers, 
pesticides, and a water system [5]. increased 
seed yield and nutritional security, particularly in 
underdeveloped nations. As a result, despite the 
fact that the global population has doubled and 
consumption pattern has tripled since the 1960s, 
agriculture has only been able to meet demand 
by growing its cultivated area by 30% [5,6]. 
According to the World Bank, demand for food 
and agricultural goods would increase by another 
30% by 2025 and by more than 70% by 2045. 
Because arable land is limited, agricultural 
intensification, which will increase fertiliser, 
insecticide, water, and other inputs, will meet a 
large portion of this growth in demand. 
Agriculture is undergoing its fourth revolution, 
which is being supported in great part by 
advances in information and communication 
technologies [8]. 
 

2. GEOGRAPHIC INFORMATION SYS-
TEM (GIS) 

 

GIS is a set of strong tools for obtaining, storing, 
and retrieving data on demand, as well as 
changing and displaying spatial data for specific 
purposes. GIS's capacity to analyse and display 
agricultural settings and work flows has proven to 
be quite beneficial for individuals in the farming 
business. On a farm, balancing inputs and 
outputs is critical to its success and profitability. 
Layers depicting topography or environmental 
factors are widely used to represent spatial data. 
GIS technology is increasingly has been used in 
models that replicate the interactions of complex 
natural systems by integrating diverse map and 
satellite information sources. GIS can be used to 
create a picture, such as drawings, animations, 
and other cartographic products, in addition to 
maps. GIS is playing an increasingly important 
role in agriculture production around the world, 
helping farmers boost production, cut costs, and 

manage their land more efficiently, from mobile 
GIS in the field to scientific analysis of production 
data at the farm manager's office. While natural 
inputs in agriculture cannot be controlled, GIS 
applications such as crop yield projections, soil 
amendment assessments, and erosion detection 
and remediation can help farmers better 
understand and manage them. The spatial crop 
model is first established in this study by 
combining Geographical Information System 
(GIS) with Environmental Policy Integrated 
System with Coupling of AVHRR and VGT data 
to simulate regional crop productivity. GIS allows 
you to overlay many 'layers' of data, such as 
environmental conditions, the doctor's office, and 
so on. Human pressure indices and actual 
physiognomy GIS is a thematic and layer-based 
method that enables you to overlay and review 
indices for various changes in the site. In the 
development and preparation, technology is used 
to its highest potential. 
 

3. INTEGRATED APPLICATIONS OF GIS 
AND RS IN PRECISION FARMING 

 
To its robust analytical functionality, GIS stands 
out from the other two technologies in that it 
maintain confidence from many sources to be 
merged, analysed, and even modelled. However, 
if the GIS database is inadequate, erroneous, or 
old, these features will not be fully realised. The 
data in a GIS database is either geographical 
(e.g., administrative boundaries and land-cover 
parcel boundaries) or thematic (e.g., land-cover 
parcel boundaries) (e.g., types of land cover). 
Traditionally, topographic or land-use maps have 
been digitised to create spatial data and some 
thematic data. These maps, however, are 
secondary in character due to map generality, 
they may not show all desired features. Second, 
due to quick changes on the ground, topographic 
and land-use maps may become obsolete. 
Remote sensing and/or GPS can be used to 
overcome these constraints. Aerial pictures and 
satellite images are unique and can provide more 
current area-based data than topographic and 
thematic maps, while GPS is a quick and efficient 
way to obtain data. A few examples of 
developing technology are remote sensing, 
global positioning systems (GPS), geographic 
information systems (GIS), and the Internet of 
Things. The Internet of Things (IoT), Big Data 
analysis, and artificial intelligence (AI) are all the 
promising techniques that are being used to 
solve various problems, improve agricultural 
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operations and inputs with the goal of increasing 
output while lowering costs [8-10], and yield 
losses [8-10] In many IoT technology solutions, 
cloud computing and wireless sensors are used. 
Automated wireless-controlled irrigation systems 
and intelligent farming are examples of smart 
farming operations. Delgado et al. [9] and Jha et 
al. [10] created disease and pest monitoring and 
forecasting systems using networks and big data 
analysis. AI techniques like as machine learning 
(e.g., artificial neural network have been used to 
estimate ET, soil moisture, and crop projections 
for automated and precise application of water, 
fertiliser, herbicides, and insecticides [11]. 
Farmers can utilise these technologies and 
methods to assess geographic diversity (e.g., 
soils) among farms and large crop fields, which 
can affect crop development and yields [11]. 
Remote sensing systems that use information 
and communication technologies generally 
generate a large volume of spectrum data due to 
the high spatial/spectral/radiometric/temporal 
resolutions necessary for Precision Agriculture 
applications. Emerging data processing 
techniques such as Big Data analysis, artificial 
intelligence, and machine learning have been 
utilised to extract useful information from the 
large amount of data [12]. 
 
According to the World Summit on Food 
Security, "the world's population is expected to 
grow to almost 10 billion by 2050, expanding 
agricultural demand by around 50% under a 
scenario of modest economic growth," compared 
to 2013 [3]. Any increase in food production, 
however, must be accompanied by a long-term 
agricultural land management strategy to avoid 
or at the very least ameliorate negative impacts 
on water and soil quality and quantity, land 
degradation, greenhouse gas emissions, and 
biodiversity [13]. Agriculture monitoring through 
using remote sensing is a huge field that has 
been extensively used for multiple outlooks, 
occasionally based on specific presentations 
(like, precision farming, prediction of yield, 
irrigation, weed identification), several remote 
sensing platforms (e.g. satellites, Unmanned 
Aerial Vehicles as UAVs, Unmanned Ground 
Vehicles – UGVs), sensors, and other factors or 
passive sensing, wavelength domain, 
geographical sampling), or specific geographic 
and climatic conditions. The growing body of 
published research suggests that remote sensing 
for agriculture has reached a point of maturity, 
and that interest in agricultural applications is 
growing at an exponential rate, especially since 
2013. This growing works also reflects significant 

advances in relevant technology, such as 
sensing devices with unprecedented spatial, 
temporal, and spectral capacities (e.g. Sentinels, 
Gaofen), the introduction of small new platforms 
like nano-satellites or unmanned aerial vehicles 
(UAV), the use of cloud computing and several 
machine learning techniques. Remote sensing in 
agriculture should be able to attain long-term 
goals as a result of these innovations. Consistent 
observations of the terrestrial environment are 
crucial for understanding climate change and its 
effects, sustaining economic development, 
effectively managing natural resources, 
encouraging conservation, preserving 
biodiversity, and advancing scientific 
understanding of ecosystems. Since the late 
1980s, there has been an increased emphasis 
on the usage of coarse resolution optical data, 
mainly the National Oceanic and Atmospheric 
Administration's Advanced Very High Resolution 
Radiometer (AVHRR) images (NOAA). For the 
sake of all land The AVHRR was initially 
accessible at an 8 km resolution and advanced 
at a notional resolution of 1 km in some parts of 
the planet. Data has become increasingly 
affordable (especially for research reasons), and 
some data is now available for free via direct 
broadcast. New satellite sensors, such as          
the SPOT 4 VEGETATION (VGT) Moderate 
Resolution Imaging Spectro radiometer, have 
been launched (MODIS). 
 
Precision farming (PF) is described as the use of 
technologies and principles to achieve spatial 
and temporal variability in all elements of 
agricultural production. In the recent decade, 
many technical advancements have improved 
the concept of precision farming. PF's 
adaptability is based on the integration and use 
of modern technologies such as advanced farm 
technologies and single system site specific 
technologies. High-speed internet connectivity 
and farmer awareness are examples of 
technology. PF is an integrated information and 
agricultural management system that is aimed to 
increase overall farm production efficiency at a 
cheap cost while avoiding the negative 
environmental consequences of chemical 
loading. The goal of PF is to collect information 
about soil and crop conditions and to capture the 
sequence of those conditions at a spatial level. 
 

4. PRECISION AGRICULTURE USING 
REMOTE SENSING SYSTEMS 

 

There are two types of remote sensing systems 
for PA: sensor platform and sensor type. 
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Satellites, aerial platforms, along with ground-
based platforms are popular areas for sensors to 
be put in sensor platforms. Since the 1970s, 
satellite technology has been regularly used for 
PA. In Pennsylvania, aircraft and unmanned 
aerial vehicles (UAVs) have been recently been 
used. The three types of ground-based platforms 
utilised for PA are hand-held, free-standing in the 
field, and mounted to a tractor or farm 
equipment. Ground-based systems are also 
known as proximal remote sensing systems 
since they are located close to the target surface 
in comparison to aerial or satellite-based 
platforms (land surface or plant). The 
geographical, spectral, radiometric, and temporal 
resolution of sensors employed for remote 
sensing differs [14]. Sensors used for remote 
sensing have different spatial, spectral, 
radiometric, and temporal resolutions [14]. The 
spatial resolution of a sensor is defined by the 
size of the pixel that shows the region on the 
ground. Sensors with a small footprint have a 
high spatial resolution, while those with a wide 
footprint have a low spatial resolution. Rather 
than the sensor itself, the sensor platform can be 
viewed of as having a high temporal resolution. 
Temporal resolution, for example, is the time it 
takes a satellite to complete an orbit and return 
to the same observation location. The spectral 
resolution of a sensor is determined by the 
number of bands captured in a particular span of 
electromagnetic spectrum [15]. Hyperspectral 
photographs width (20 nm) separated by minor 
wavelength increments [16].  

 
A variety of vegetation indices, statistics, and 
machine learning algorithms, such as deep 
convolutional neural network and random forest, 
have been used to reduce the dimensionality of 
hyperspectral data and extract meaningful 
information on crop conditions [17,18,19]. 
Hyperspectral image quantification of solar-
induced chlorophyll fluorescence (SIF) has 
recently been used to quantify photosynthesis, 
plant nutrients, and biotic and abiotic stressors 
like disease and water stress [17-22]. The 
suitable spatio-temporal determination necessary 
for PA is determined by various aspects, 
including management objectives, field size, and 
the flexibility of farm equipment to change input 
application rates (irrigation, fertiliser, pesticide, 
etc.). Crop biomass and yield estimation 
frequently require higher spatial resolution (1–3 
m) than variable rate fertiliser and irrigation (5–10 
m) applications [23]. Satellites, planes, and 
unmanned aerial vehicles (UAVs) all include 
sensors that are passive, meaning they don't 

have their own light source. Active sensors are 
onboard some spacecraft, such as the ERS-1/2's 
active microwave instrument (AMI). Many 
ground-based remote sensing systems use 
active proximity sensors. In commercially 
available variable fertiliser rate application 
systems like Green Seeker and Crop Circle, 
active proximity sensors are used. 
 
In such systems, daylight variations had the least 
effect on measured reflectance, resulting in more 
precise and repeatable normalised difference 
vegetation index (NDVI) or further vegetation 
indices (VI) for crop nutritional grade monitoring. 
Other instruments (thermal infrared and 
microwave) deployed on later satellites are 
increasingly being employed in agriculture. 
Thermal infrared sensors measure the amount of 
energy emitted by a target (such crops) to 
determine its temperature, which can 
subsequently be used to compute crop water 
stress, ET, and irrigation requirements [24]. 
Microwave sensors, like thermal sensors, 
monitor the emitted energy (although in longer 
microwave wavelengths) from the ground surface 
[25]. Microwave sensors are mostly used to 
determine soil moisture content and crop water 
use over large areas. Microwaves can pass 
through clouds, giving them an advantage over 
sensors that employ visible and near-infrared 
wavelengths. 
 

5. APPLICATION OF REMOTE SENSING, 
GIS IN NATURAL RESOURCE 
MANAGEMENT AND AGRICULTURE 

 

For long-term natural resource management at 
the local, regional, and national levels, 
researchers have long recognised the need for 
mapping soil and land use records [26 and 27]. 
Irrigation, drainage, fertiliser, and additional crop 
management practises, which are essential 
components of PA, necessitate an understanding 
of soil physical, biological, and the chemical 
characteristics. Land use mapping can also be 
used to investigate the regional and national 
implications of present management and policy. 
A traditional method of using remote sensing 
techniques in agriculture existed even before the 
term "remote sensing" was coined in 1958. Aerial 
photography was employed to map soils, land 
use, and agricultural conditions in the United 
States during the 1930s and 1940s [28]. 
Traditional soil mapping and land use 
classification methods (such as low altitude 
photography and ground crews) frequently need 
extensive fieldwork and laboratory analysis, 
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which is both expensive and time-consuming [29 
and 30]. Satellite remote sensing was introduced 
later, enabling for more efficient and effective 
mapping of land use and land cover at regional, 
national, and global scales. Vanguard 2 and 
TIROS 1 were the first meteorological satellites 
to be launched, in 1959 and 1960, respectively 
[31] yield Landsat 1 (formerly known as the Earth 
Resources Technology Satellite-ERTS) was 
launched by the National Aeronautics and Space 
Administration on July 23, 1972, ushering in a 
new era of satellite remote sensing for agriculture 
(NASA). NASA and the US Geological Survey of 
the US Department of the Interior jointly oversee 
the Landsat programme (USGS). Following 
Landsat 1, a series of Landsat satellites (Landsat 
2–8) were propelled to provide high-quality 
photos to researchers, land managers, and 
policymakers to aid in the global management of 
natural resources. 
 

Satellite data from these flights was used to 
classify land use and crops in many major 
portions of the world. Satellite products were also 
used to track soil and vegetation health, as well 
as hydrologic and meteorological parameters 
that are most important for PA (like, soil organic 
carbon content, moisture of soil, NDVI and LAI), 
groundwater and rainfall amount. When 
compared to aerial photography, which was 
previously used to classify land use across large 
areas, satellite photographs proved to be more 
cost-effective. However, coarse spatiotemporal 
resolution satellite outputs are insufficient for 
many PA applications. Satellites appropriate for 
PA, such as IKONOS, were launched in the late 
1990s [23]. IKONOS, which was inaugurated in 
1999, captured imaginings with a 4-m spatial 
resolution under visible and NIR bands over a 
five-day return period. In Pennsylvania, IKONOS 
imagery has been utilised for soil mapping, crop 
growth, development and yield estimation, 
fertiliser detrmination, and ET estimation 
[33,41,42,43]. In recent years, a flurry of 
nanosatellite constellations have been launched, 
addressing various concerns with satellite 
imagery's spatial, spectral, and temporal 
resolution [66].Nanosatellite constellations are 
made up of a large number of small spacecraft 
with inexpensive and replaceable sensors             
[47]. 
 

6. LAND USE AND LAND COVER 
CONCEPT AND DEFINITIONS  

 

The land is a valuable natural resource that 
highly contributes to human progress along with 

existence by providing food and shelter. As a 
result, studying LULC adds to a better knowledge 
of the long-term use of land resources for natural 
resource management and efficient land use. It is 
necessary to be familiar with the terms land, 
land-use, and land-cover in order to comprehend 
the LULC classification process. 

 
"Land" is defined as "a definable area of the 
earth's terrestrial surface, covering all aspects of 
the biosphere directly above or below the 
surface, counting those of the near-surface 
climate, soil and terrain practises, surface 
hydrology (together with shallow lakes, rivers, 
marshes, and various swamps), near-surface 
sedimentary layers and related groundwater 
spare, plant and animal inhabitants, human 
settlement arrangements, and hydrology of 
surface," according to FAO [73]. (Including 
shallow lakes, rivers, and marshes). 
 
Land-use: The manner in which humans utilise 
the earth's surface are referred to as "land-use." 
Land-use is well-defined by the FAO [73] as 
"human activities directly related to land, making 
use of its resources, or having an impact on 
them," and it may include "human                        
activities directly related to land, making use of 
its resources, or having an impact on                 
them."  

 
7. LULC CLASSIFICATION SYSTEM  
 
Land-cover area and land-use are two 
perspectives on the earth's surface related by 
two basic questions: what is the means of this 
(land-cover) and how it is for? (land-use). 
Consider what should be examined and what 
observation units should be considered when 
answering these questions. The lot of the 
sample, land cover and land use are interwoven. 
The classification technique can help to clear up 
any confusion between the two names. The 
examination of LULC dynamics is necessary on 
a regular basis for land and natural resource 
management. Enormous quantities of 
cartographic statistics are now available, but the 
mostly of them are useless since they are 
outdated and difficult to connect with other data 
sources. FAO and UNEP took initiatives toward 
building an internationally acknowledged 
reference base for LULC categorization in 1993, 
with the goal of standardising data collection and 
administration. This project expresses the 
concept that this classification can be applied at 
any scale and in every region on the planet [74].
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Table 1. Shows a list of some of the sensors utilised in PA 
 

Satellite (Years Active) Spatial Sensors  

Resolution 

Sequential 
Resolution 

Utilization in Precision  

Agriculture 

Landsat-1 (1972–1978) MS (80 m) 18 days In crop growth [32] 

AVHRR (1979–present) MS (1.1 km) 1 day Management of nutrients [33] 

Landsat 5 TM (1984–2013) 

Landsat 7 (1999–present) 

Landsat 8 (2013–present) 

MS and Thermal (60 m–Landsat 
7,100 m–Landsat 8, 120 m–
Landsat 5) 

16 days Biomass assessment [34]; crop yield [35]; 
crop growth [36] 

SPOT 1 (1986–1990) 

SPOT-2 (1990–2009) 

MS (20 m) 2–6 days Water of management [37] 

IRS 1A (1988–1996) MS (72 m) 22 days Water of management, nutrients management 
[38] 

LiDAR (1995) VIS (10 cm) N/A Geography, nutrient management [39] 

Radar SAT (1995–2013) C-band SAR (30 m) 1–6 days Crop advancement [40] 

IKONOS (1999–2015) MS (3.2 m) 3 days Yield of crop [41]; soil properties [42]; nutrient 
management [33]; ET estimation [43] 

EO-1 Hyperion (2000–2017) HS (30 m) 16 days Disease screening [44, 45] 

Terra/Aqua MODIS (Terra-1999–present, Aqua-
2002–present) 

MS (Spectro Radiometer; 250–
1000 m) 

1–2 days Plant yield [46]; crop growth [47] 

Terra-ASTER (2000–present) MS and Thermal (15 m–V, NIR, 
30 m–SWIR, 90 m–TIR) 

16 days Water of management [48] 

QuickBird (2001–2014) MS (2.44 m) 1–3.5 days Disease identification [49] 

AQUA AMSR-E (2002–2016) MS (Microwave Radiometer; 5.4 
km–56 km) 

1–2 days Water of management [50] 

Spot-5 (2002–2015) MS (V, NIR–10 m, SWIR–20 m) 2–3 days Crop growth [51] 

ResourceSat-1 (2003–2013) MS (5.6m–V, 23.5 m–SWIR) 5 days Nutrient management [52] 

KOMPSAT-2 (2006–present) MS (4 m) 5.5 days Seed yield [53] 

Radarsat-2 C-band SAR (1–100 m) 3 days LAI and biomass accumulation [54] 

Rapid Eye (2008–present) MS (6.5 m) 1–5.5 days Water supervision [55]; crop yield [56]; crop 
growth and chlorophyll [57] 

GeoEye-1 (2008–present) MS (1.65 m) 2.1–8.3 
days 

Nutrient monitoring [58] 
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Satellite (Years Active) Spatial Sensors  

Resolution 

Sequential 
Resolution 

Utilization in Precision  

Agriculture 

WorldView-2 (2009–present) MS (1.4 m) 1.1 days Crop development [59] 

Pleiades-1A (2011–present) Pleiades-1B (2012–
present) 

MS (2 m) 1 day Crop evolution [60 and  61] 

VIIRS Suomi-NPP (2011–present) 

VIIRS-JPSS-1 (2017–present) 

MS (IR Radiometer, 

 375 m and 750 m) 

16 day 
(repeat) 

Crop management (NDVI [62] 

KOMPSAT-3 (2012–present) MS (2.8 m) 1.4 days Crop development [63] 

Spot-6 (2012–present), Spot-7 (2014–present) MS (6 m) 1-day Disease indication [64] 

SkySat-1 (2013–present) SkySat-2 (2014–present) MS (1 m) sub-daily Crop growth [65] 

Worldview-3 (2014–present) SS (1.24 m) <1 day Crop advancement [66]; weed management 
[58] 

Sentinel-1 (2014–present) C-band SAR (5–40 m) 1–3 days Crop growing [65] 

Sentinel-2 (2015–present) MS (10 m–V and NIR, 20 m–Red 
edge and SWIR, 60 m–2 NIR) 

2–5 days Yield of plants [66]; N management [67] 

KOMPSAT-3A (2015–present) MS (V NIR–2.2 m, SWIR–5.5 m) 1.4 days Disease [68] 

SMAP (2015–present) L-band SAR (1–3 km) and 
radiometer (40 km) 

2–3 days Crop yield [69]; water management [70] 

TripleSat (2015–present) MS (3.2 m) 1 day Crop progress [71] 

ECOSTRESS-PHyTIR (2018–present) Thermal (38 
× 

69 m) 1–5 days ET [72] 
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Di Gregorio and Jansen [75] studied and 
classified into two primary types of LULC 
classification: hierarchical and non-hierarchical. 
Hierarchical categorization is preferred because 
it provides more consistency and incorporates 
many levels of information, beginning with 
systematic broad level classifications that are 
subdivided into specific level of sub-classes. A 
priori and posteriori classification are two 
approaches to classification. A priori 
classification is based on the definition of classes 
prior to data collection, in which many diagnostic 
criteria are dealt with in advance of data 
collection. The posteriori strategy is based on 
class definition after clustering the field samples. 
The term “posteriori” refers to a classification that 
is made after the fact. There is no classification 
that has been internationally accepted till today 
because of the dissimilar perspectives of 
arrangement purposes, scale and procedures 
[75]. The types of LULC classifications have 
been used according to the purpose of the study.  
 
Roy et al. [76] has developed certain 
categorization system criteria to solve challenges 
such as class definition, numerous lands use on 
a particular land parcel, and least represent able 
regions. These standards involve a minimum 
level of LULC category explanation correctness 
of at least 85%, the cataloguing must be 
appropriate for a large area, combination of 
different classes must be attainable and the 
classification might be compatible along-with 
data at various times of remote sensing. He 
projected a multilevel LULC arrangement system 
in which LULC data is presented at many stages, 
such as I, II, III, and IV. The level I and level II 
classifications are appropriate in investigations 
conducted on a national, interstate, or state-by-
state basis. 
 

8. LULC CLASSIFICATION METHODS  
 
The classification techniques involve translation 
of pixel values of satellite imagery into 
meaningful information. There are huge numbers 
of classification methods available today to group 
pixel values into meaningful categories. The 
commonly known classification methods include 
automated method, manual method and hybrid 
approach. 
  
Horning [77] studied the automated method 
involves two basic classification methods i.e. 
There are two types of classification: supervised 
grouping, which needs prior information related 
with all cover types to be classified, and 

unsupervised arrangement, that requires no prior 
facts related to land cover styles. In compared 
with human pictorial methods, the advantage of 
an automatic approach is that the algorithm is 
practically steadily and quickly throughout the 
entire image, and several other layers can be 
used for classification. 
 
Hansen et al. [78] has studied about both the 
mechanical classification methods depicting 
more reliable results, however, for supervised 
ordering, is a wider range of algorithms is 
available. Trees, neural networks [79], fuzzy 
classification [80], and combination modelling are 
a few algorithms used for supervised 
classification. Progressive generalisation [81] 
and cataloguing by augmentation and post-
processing changes are examples of 
unsupervised classification. 
 
Chouhan et al. [82] studied to evaluate the 
response of wheat yield for drip irrigation 
arrangements, as well as ascribed water 
efficiency, saving indices of water, under semi-
tropical clay - loam conditions of the soil over the 
2011-12 rabi seasons to investigate the effect 
Drip irrigated wheat had a 24.24 percent higher 
water productivity than border irrigated wheat, 
according to the data. The grain yield, on the 
other hand, decreased by 10.8%. This could be 
because the wheat crop were subjected towards 
more water stress throughout their developing 
phases. Lastly, excellent irrigation water 
management in drip irrigation is capable system 
for improved water efficiency and might be used 
as an alternate irrigation method, However, more 
research under similar field settings is required. 
Effects of drip irrigation on wheat crop water 
output and yield characteristics When comparing 
drip irrigation to border irrigation, the results 
showed that drip irrigation saves roughly 28.42 
percent more water. 
 
 Ambika et al. [83] studied about that there were 
no high-resolution irrigated region maps for India 
along-with large history that might be utilised for 
planning of water resources and super vision. 
High-resolution maps for all agro meteorological 
regions in India are generated using 250 m 
normalised difference vegetation index (NDVI) 
figures from the Moderate Resolution Imaging 
Spector-radiometer and 56 m land use and/or 
land cover records for the period 2000–2015. 
This irrigated area maps are examined and 
compared to the previously created irrigation 
maps using agricultural figures collecting from 
differnt ground surveys. 
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Retto [84] studied Land Use/Land Cover 
Classification Accuracy Assessment. The Non-
Parametric Rule were utilized to perform 
supervised grouping in this study. Agriculture 
(65.0%), water bodies (4.0%), built-up extents 
(18.3%), mixed forest area (5.2%), and 
unfertilised land (5.2%) are the top LULC 
categories (0.5 percent). The inclusive 
classification accurateness of the research was 
noted 81.7 percent, along-with a kappa 
coefficient (K) of 0.722. 
 
Pun et al. [85] the spatial circulation of irrigated 
as well as non-irrigated crop areas is classified 
and mapped using surface energy equilibrium 
fluxes and vegetation indices in this remote 
sensing study. The goal is to provide a 
classification scheme that may be used over a 
wide-ranging of regional climates and seasonal 
precipitation patterns. The formulation and 
standardisation of the strategy mainly based on 
the rainiest growing period provides basis for 
climatic and inter-growing seasonal adaptation. 
Two indices derivative from evapotranspiration 
fluxes and vegetation indices are used to 
difference and identify irrigated and non-irrigated 
crop regions using empirical distribution 
functions. Through adding other categorising 
layers that reclassifies misclassified crop regions 
by the base index, the synergy of the two indices 
improves ordering competency. 
 
Zubair [86] studied about the classification 
methods and discover that when the user is 
familiar with the area to be categorised, the 
manual method is effective. Visual indications 
such as texture, tone, shape, pattern, and 
relationship to other items are used in this 
strategy. It mostly relies on the human brain to 
recognise and relate visual elements to the 
ground. For visual feature identification, human 
analysis still outperforms machine accuracy. 
Manual interpretation has the disadvantage of 
being tedious and time-consuming in compared 
to automatic classification due to its subjective 
character. 
 

9. IMPORTANCE OF REMOTE SENSING 
AND GIS IN LULC STUDIES  

 
Remote sensing along with geographic 
information systems (GIS) can be used to map, 
monitor, and model LULC changes. Prior to the 
availability of several satellite images, remote 
sensing was used to create maps for LULC 
research using aerial photography. The reflected 
response of items on the earth's surface is 

captured through remote sensing. LULC change 
patterns can be identified and quantified using 
repeated synoptic coverage with consistent 
acquisition. Remote sensing is appropriate for 
LULC investigations because of characteristics 
such as repeated synoptic coverage, low cost, 
higher accuracy, less arduous, and time efficient. 
Continuous monitoring and modelling of LULC 
change processes is now possible due to the 
very high spatial resolution satellite imagery and 
increasingly progressive image processing and 
GIS technology. Remote sensing (RS) and GIS, 
in combination with statistical approaches, play 
an important role in model building, 
parameterization, model application, and model 
validation, all of which are beneficial to LULC 
change research. 
 
Patle et al. [87] a studied the Nahra nala 
watershed area, which is a branch of the 
Wainganga River and is located in the Madhya 
Pradesh, Balaghat district, India, was mapped 
with SENTINEL-2B satellite figures along-with a 
precise spatial resolution for land use/land cover 
mapping. Water bodies, agricultural land, forest 
area, habitation, and wasteland reions were 
recognised as five land use/land cover types 
under the study district. Forest is the most 
common LU/LC type in the study area, 
accounting for 83.79% of the watershed's total 
geographical area.  
 

10. SOIL MOISTURE 
 
Remote sensing data gathered in a variety of 
bands, involving optical, thermal, and microwave, 
has been used to estimate soil moisture globally 
[88, 89, 90]. For soil moisture and ET 
calculations, the "triangle" or "trapezoid" or land 
surface temperature-vegetation index (LST-VI) 
technique [91, 92, and 93] has widely used 
optical and thermal remote sensing statistics. 
The triangle method, also known as LST-VI, is 
based on the physical relationship between 
vegetative cover quality and land surface 
temperature. In this method, the pixel distribution 
in the LST-VI plot-space is interpreted to 
determine soil moisture. When a large number of 
pixels are present in an image containing the 
entire range of soil moisture and vegetation 
density, and cloud, surface water, and other 
outliers are removed, the LST-VI space 
resembles a triangle or trapezoid [92]. One edge 
of the LST-VI triangle or trapezoid decreases to 
increasing temperatures, representing the dry 
edge (low soil moisture), whereas the opposite 
side represents the wet edge (high soil moisture) 
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[94]. Due of LST's low sensitivity to soil, the LST-
VI space takes on a triangular or trapezoidal 
shape. Moisture in dense vegetative settings, vs 
its high compassion to soil moisture in bare soil 
or sparse vegetation situations. Soil moisture for 
remaining pixels can theoretically be calculated 
by interpolation practices after finding the upper 
and lower limit moisture content for wet and dry 
boundaries. The triangle method [92 and 95] 
uses a basic parametrization methodology to 
predict soil moisture and does not require 
supplemental air or surface data. However, a 
subjective determination of wet and dry borders 
in the triangle technique might introduce 
considerable mistakes in soil moisture 
assessment, especially over generally 
homogeneous land surfaces. Petropoulos et al. 
[96] and Carlson et al. [97] designed and 
evaluated a new generation of triangle models 
for high spatial resolution mapping of soil 
moisture in PA applications. One such technique 
is the optical trapezoid model (OPTRAM), which 
replaces the LST in the classic triangle model 
with short-wave-infrared transformed reflectance 
(STR). The moisture content of the soil in 
OPTRAM is calculated using the explanation of 
STR-VI space, similar to the classic triangle 
model [97]. Sadeghi et al.[98] used Sentinel-2 
and Landsat-8 figures to show that the OPTRAM 
model can estimate soil moisture accurately 
(0.04 cm3/cm3) in grassland and agriculture 
dominated watersheds in Arizona and Oklahoma, 
USA. Because the OPTRAM model does not 
require thermal remote sensing data, it can be 
used with a wider spectrum of data. Surface 
reflectance (STR), unlike LST, is a function of 
surface qualities and does not vary greatly with 
ambient atmospheric conditions, hence there is 
no need to parametrize or calibrate the model for 
each individual. Microwave remote sensing data 
has a higher prospective for providing precise 
soil moisture assessments than data gathered 
under the visible, NIR, and SWIR bands [93]. 
Signals in visible as well as near-infrared ranges 
had a lower penetrating ability than microwave 
signals, and are more susceptible to interference 
produced by atmospheric and cloud conditions 
[95]. For soil moisture measurement, sensors of 
microwave evaluate di-electric characteristics of 
soil surface mainly based on land surface 
smattering. The traditional microwave scanning 
radiometer-earth observing system (AMSR-E), 
soil moisture and ocean salinity (SMOS), soil 
moisture active passive (SMAP), and Sentinel-1 
[93] have all been launched with active along-
with passive microwave sensors for soil moisture 
observing. When compared with passive 

microwave sensors, active microwave sensors 
have a better spatial resolution. Active sensors, 
on the other hand, are subject to measurement 
errors owed to land surface coarseness and 
vegetation cover or canopy area [98]. Passive 
sensors, on the additional hand, were more 
precise and deliver high temporal resolution, but 
they have a rougher geographical resolution 
(e.g., 10s of kilometres) [99]. Typically, better 
resolution data is required for watershed and 
agricultural applications, predominantly PA  
[100]. 

 
11. NUTRIENT MANAGEMENT 
 
An application of fertilizers must be done timely 
with suitable methods in order to take advantage 
for crop growth and yield whereas decreasing 
environmental impairment from loss of nutrients 
to groundwater and surface water. During 
establishing and succeeding phases of crop 
development, the suggested rate of fertiliser is 
commonly sprayed constantly. Due to variations 
in soil types, management, topography, weather 
condition, hydrology, crop fertiliser necessities 
vary geographically and temporally (during and 
between seasons) [101 and 102]. Using standard 
instruments like chlorophyll metres to map such 
fluctuation in status of crop nutrient for PA 
submissions might be difficult. Several remote 
sensing-derived vegetation indices (e.g., NDVI, 
SAVI) had been demonstrated to be considerably 
linked along-with plant chlorophyll, 
photosynthetic rate, and production of plant. 
Understanding the geographical diversity in            
crop nutrient status, that are critical for PA,                   
can be aided by mapping these                      
indices. 
 

 Numerous tractor-mounted remote sensors are 
available that might assess status of plant 
nutrient for present administration of spatially 
varying fertiliser amounts have recently become 
available. Commercially existing hand-held and 
tractor-mounted remote sensors which utilized 
crop reflectance information to estimate and 
spread over spatially variable fertiliser rates in 
real-time include Green Seeker, Yara N-sensor, 
and Crop Circle [103]. 
 
Remote sensors are frequently installed forward 
of the spray boom in tractor-mounted systems. In 
these systems, nitrogen (N) submission doses 
are estimated using vegetation indicators (e.g., 
NDVI), whose are then sent to a nutrient 
spreader for real-time fertiliser submission. The 
noted vegetation indices are converted into 
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appropriate Nitrogen application doses using 
various algorithms. The N-application rates were 
estimated in general by associating with 
observed vegetation indices in the marked field 
to a reference vegetation index calculated in a 
healthy fertilised (N-rich) plot/strip that is 
indicative of the target field. Various fertiliser rate 
identification algorithms have been devised and 
effectively used in these marketally accessible 
sensors to record vegetation-indices based in-
season nitrogen requirements for various crops 
[104,105]. 
 

Despite the commercialization of proximal 
remote sensing-based variable rate N-
management technology, farmer acceptance 
remains stumpy in several agricultural 
companies [106]. The lack of unambiguous proof 
of considerable economic assistances (yield of 
crop and/or productivity), particularly in 
marketable farm settings (eg., large field areas), 
is a barrier to widespread implementation of 
these technologies [107]. Investigation is being 
undertaken with UAVs and several other remote 
sensors for a number of variety of crops in 
dissimilar climatic locations to advancement of 
these remote sensing based knowledge and 
enrich their benefits. Maresma et al. [108] 
investigated the usefulness of multiple vegetation 
indicators and height of crop is calculating in-
season fertiliser treatment doses for maize 
produced in Spain using photos obtained by a 
UAV. Green Seeker and different crop circle 
sensors decrease nitrogen fertiliser use and 
boosted nitrogen efficiency for winter wheat 
cultivation in China, according to [109]. Overall, 
mapping based on remote sensing status of crop 
nutrients in the Pennsylvania might be boost crop 
nutrient use effectiveness whereas maintaining 
and increasing crop yields and also avoiding 
harmful off-site nutrient losses. 

 
12. CROP MONITORING AND YIELD 
 
Crop growth must be supervised in order to 
recognise the reaction of crop to environment 
and agronomic methods and to build            
successful fieldwork and/or remedy management 
programmes [110]. LAI and biomass 
accumulation are two important crop health and 
growth indices [111]. Several crop development 
and yield forecasting representations employ LAI 
as an input [112]. In-situ LAI assessment method 
are labour-intensive and time-taking, comparable 
to destructive field approaches for biomass 
approximation. Furthermore, these approaches 
do not produce a map of crop growth and 

biomass spatial variability [90 and 113]. Remote 
sensing figures on crop development and 
biomass might be used to gather useful 
information on site-specific properties (like, soil 
type topography etc.), management practices 
(viz. water, nutrient & other inputs), and several 
biotic as well as abiotic stresses (like, diseases, 
weeds, water, and nutrient stress) [114]. Remote 
sensing statistics can also be utilized to plot 
variations in tillage and residue management 
with their effects on crop growth and 
development. [115]. In a number of studies [116 
and 117], hyper-spectral images paired to 
numerous machine learnings and cataloguing 
algorithms were used to record tillage and crop 
residue in agricultural extents. Such info on crop 
conditions and tillage practises could be help to 
plan scheme site-specific management, which 
may include adjustable irrigation. LAI and 
biomass had been projected by remote sensing 
figures for a variety of crops, involving row crops, 
several orchards, and vine crops [118, 119 and 
120]. Normally, few research establish a 
regression or machine learning based approach 
to calculate LAI and/or biomass accumulation for 
research field by means of a collection of 
reference figures (e.g., calculated LAI and 
vegetation indices). Yue et al. [115] estimated 
bio-mass (R2 = 0.74) in several irrigation levels 
and fertiliser dose treatment plot during winter 
season of wheat cultivated in China using 
multiple spectral indices in combination with 
observed height of plant. For Kinnow mandarins 
produced in Pakistan, Ali et al [121] employed 
red-edge position (REP) recovered from 
hyperspectral images to estimate LAI (R2 = 
0.930) along with chlorophyll amount (R2 = 
0.90). REP is the location of the red-NIR slope's 
primary inflection point, which is instigated by 
significant chlorophyll absorption under red 
spectrum and canopy smattering in the NIR 
section [120]. Owed to intervention from the 
naked soil surface, accurate LAI estimate from 
reflectance records may be challenging, 
principally during early stage of crop growth. 
Improved vegetation indices corrected for soil 
and several other intrusions had been planned 
and utilized to evaluation LAI to address this 
constraint [122]. Red-edge constructed 
vegetation indexes had recently demonstrated to 
be useful for calculating LAI in a variety of crops 
[121]. There are two methods for             
estimating crop yields using remotely sensed 
data. 
 
To estimate crop yield and biomass, biophysical 
factors resultant from remotely sensed facts are 
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first utilized in a crop model. Second, arithmetical 
(e.g., regression) or realistic connections were 
established between crop parameters/indices 
which derivative from remote sensing (e.g., 
NDVI, LAI) and detected crop yield with biomass 
accumulation in a typical agricultural field area. 
Agricultural yield could then be mapped at a 
target crop field using the generated regression 
model or empirical connection. Crop modelling is 
a data-intensive method that necessitates a huge 
quantity of data in the form of model input 
considerations, meteorological figures, yield and 
biomass data. 
 
Maresma et al. [108] evaluated the association 
between maize crop yield, biomass accumulation 
and spectral indicators recorded during V12 
phase using a regression-based technique. They 
also discovered that for a variety of fertiliser 
application rates, the red-based indices NDVI 
and wide dynamic range vegetation index 
(WDRVI) showed the maximum connection with 
grain yields, similar to prior studies. In 
comparison to a single snapshot during the 
season, spatial mapping for crop biophysical 
characteristics or indices at frequent periods 
during the growing season is likely to provide a 
better estimate of crop biomass accumulation 
and yield [114]. 
 

13. CONCLUSION 
 
The current study provided a comprehensive 
review of the function of remote sensing in 
assessing different water security challenges and 
other purposes. GIS is playing an increasingly 
important role in agriculture production around 
the world, helping farmers boost production, cut 
costs, and manage their land more efficiently, 
from mobile GIS in the field to scientific analysis 
of production data at the farm manager's office.  
The Internet of Things (IoT), Big Data analysis, 
and artificial intelligence (AI) are all the promising 
techniques that are being used to solve various 
problems, improve agricultural operations and 
inputs with the goal of increasing output while 
lowering costs.  
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