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Abstract

An overview of computational methods to describe high-dimensional potential energy surfaces
suitable for atomistic simulations is given. Particular emphasis is put on accuracy, computability,
transferability and extensibility of the methods discussed. They include empirical force fields,
representations based on reproducing kernels, using permutationally invariant polynomials, neural
network-learned representations and combinations thereof. Future directions and potential improve-
ments are discussed primarily from a practical, application-oriented perspective.

1. Introduction

The dynamics of molecular (i.e. chemical, biological and physical) processes is governed by the underlying
intermolecular interactions. These processes can span a wide range of temporal and spatial scales and make a
characterization and the understanding of elementary processes at an atomistic scale a formidable task [1].
Examples for such processes are chemical reactions or functional motions in proteins. For typical organic
reactions the time scales are on the order of seconds whereas the actual chemical step (i.e. bond breaking or bond
formation) occurs on the femtosecond time scale. In other words, during ~10'” vibrational periods energy is
redistributed in the system until sufficient energy has accumulated along the preferred ‘progression coordinate’
for the reaction to occur [2]. Similarly, the biological process of ‘allostery’ couples two (or multiple) spatially
separated binding sites of a protein which is used to regulate the affinity of certain substrates to a protein, thereby
controlling metabolism [3]. According to the conventional view of allostery, a conformational change of the
protein (that might however be very small [4]) is the source of a signal, but other mechanisms have been
proposed as well which are based exclusively on structural dynamics [5]. Here, binding of a ligand at a so-called
allosteric site increases (or decreases) the affinity for a substrate at a distant active site, and the process can span
multiple time and spatial scales to the extent of the size of the protein itself. Hence, an allosteric protein can be
viewed as a ‘transistor’, and complicated feedback networks of many such switches ultimately make up aliving
cell [6]. As a third example, freezing and phase transitions in water are entirely governed by intermolecular
interactions. Describing them at a sufficient level of detail has been found extremely challenging and a complete,
quantitative understanding of the phase diagram or the structural dynamics of liquid water is still not

available [7, 8].

High-dimensional energy functions also play important roles for applications in material sciences and
catalysis. For example, the interaction between nanoparticles used as catalysts and their substrates can depend
sensitively on the size and shape of the nanoparticle. Hence, an accurate description of the intermolecular
interactions is required depending on the physical appearance of the particle [9] as well as for the examination of
its dynamics [10]. In surface science, accurate potential energy surfaces (PESs) are, e.g. required to investigate the
effect of substrate surface energy, orbital radii and ionization energy on monolayer metal oxide coating stability
on support metal oxides [11]. Band gaps are another energetic property of materials that depends on the
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composition and atomic ordering for which extensive information based on computation and experiment can
provide deeper insight at a molecular level [ 12, 13]. Such efforts have potential applications in guiding the search
for new photoactive materials for photocatalysis [ 14]. Finally, high dimensional PES are also probed when
investigating the dynamics and energetics of phase transitions which has recently been done for melting points
of anumber of metalloids [15].

All the above situations require means to compute—for given nuclear coordinates of all particles involved—
the total energy of the system efficiently and accurately. The most accurate and comprehensive approach is to
solve the electronic Schrédinger equation for every nuclear configuration X of the system for which energies and
forces are required. However, there are certain limitations which are due to the computational approach per se,
e.g. the speed and efficiency of the method, or due to practical aspects of quantum chemistry such as accounting
for the basis set superposition error, the convergence of the Hartree—Fock wavefunction to the desired electronic
state for arbitrary geometries, or the choice of a suitable active space irrespective of molecular geometry for
problems with multi-reference character, to name a few. Improvements and future avenues for making
approaches based on quantum mechanics (QM) even more broadly applicable have been recently discussed [16].
For problems that require extensive conformational sampling or sufficient statistics purely QM-based dynamics
approaches are still impractical.

A promising use of QM-based methods are mixed QM /molecular mechanics (QM/MM) treatments which
are particularly popular for biophysical and biochemical applications [17]. Here, the system is decomposed into
a ‘reactive region’ which is treated with a quantum chemical (or semiempirical) method and an environment
described by an empirical force field. Such a decomposition considerably speeds up simulations such that even
free energy simulations in multiple dimensions can be computed [18]. One of the current open questions in such
QM/MM simulations is that of the size of the QM region required for converged results [19].

Other possibilities to provide energies for molecular systems are based on empirical energy expressions, fits
of reference energies to reference data from quantum chemical calculations, representations of the energies by
kernels or by using neural networks. These methods are the topic of the present perspective as they have shown
to provide means to follow the dynamics of molecular systems over long time scales or to allow statistically
significant sampling of the process of interest.

First, explicit representations of energy functions are discussed. This usually requires one to choose a
functional form of the model function. Next, machine learned PESs are discussed. In a second part, topical
applications and an outlook for these methods are presented.

2. Explicit representations

Empirical force fields (FFs) are one of the most seasoned concepts to represent the total energy of a molecular
system given the coordinates X of all atoms. A general expression for an empirical FF includes bonded (Epopnded)
and nonbonded (E, oppbonded) terms.

EX) = Y ky(r—r)*+ > ko0 — 6.)> > k(1 + cosny — )
bonds angle dihedrals

Rmin~ 2 Rmin~ 2 q1q
+ 2 kmp(@— 00+ D € (—] —[—) +—. M

impropers nonbonded Tij Tij €1tij

Such representations can be evaluated very efficiently, the forces are readily available and systems containing
millions of atoms can be simulated for extended time scales [20]. On the other hand, the quantitative accuracy of
such force fields as compared with high-level electronic structure methods is very limited. Conversely, one of the
noteworthy advantages of empirical energy functions is that they can be consistently improved, for example by
replacing harmonic potentials for chemical bonds by Morse oscillator functions or by extending conventional
point charge electrostatics through multipolar series expansions [21-25]. Also, additional terms can be included
to provide a more physically motivated representation, such as adding terms for polarization interactions [26].
While equation (1) is a general form of a FF for biomolecular applications, alternative functional forms and
other applications have also been discussed in the literature. One example is the universal force field for which
the parameters are based only on the element, its hybridization, and its connectivity [27]. It has been applied to
organic, main group inorganic and transition metal-containing compounds. Another example is COMPASS
(condensed-phase optimized molecular potentials for atomistic simulation studies) which has been applied to
study organic molecules, inorganic small molecules, and polymers [28]. It relies heavily on fitting to reference
data from electronic structure calculations but also includes refinement with respect to experimental data in the
condensed phase. As a third example, DREIDING is a simple generic force field for predicting structures and
dynamics of organic, biological, and main-group inorganic molecules [29]. Finally, there are also FFs that are
particularly suitable to treat systems including transition metals or delocalized electronic structure. One of them
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is based on valence bond concepts (VALBOND) [30, 31] which has also been extended to treat electronic effects
such as the trans influence [32] or reactions [33].

For smaller molecular systems more accurate representations are possible. Typically, reference energies are
computed from quantum chemical calculations on a grid (regular or irregular) of molecular geometries. These
energies are then fit to parameters in a predetermined functional form to minimize the difference between the
reference energies and the model function.

One example for such a predefined functional form are permutationally invariant polynomials (PIPs) which
have been applied to molecules with 4-10 atoms and to investigate diverse physico-chemical problems [34].
Using PIPs, the permutational symmetry arising in many molecular systems is explicitly built into the
construction of the parametrized form of the PES. The monomials are of the form Y = exp (—r;j/a)where the
rjjare atom—atom separations and a is a range parameter. The total potential is then expanded into
multinomials, i.e. products of monomials with suitable expansion coefficients. For an A,B molecule the
symmetrized basis which explicitly obeys permutational symmetry is 3’ ( yleyZC3 + y2b3 »3)- Alibrary for
constructing the necessary polynomial basis has been made publicly available [35].

One application of PIPs includes the dissociation reaction of CHZ to CH3 + H, for which more than 36 000
energies [36] were fitted with an accuracy of 78.1 cm ™ *. With this PES the branching ratio to form HD and H, for
CH,D™" and CHY, respectively, was determined. Also, the infrared spectra of various isotopes were computed
with this PES [37]. Other applications concern a fitted energy function for water dimer [38], which became the
basis for the WHBB force field for liquid water [39] and that for acetaldehyde [40]. For acetaldehyde roughly
135 000 energies at the CCSD(T)/cc-pVTZ level of theory were fitted to 2655 terms with order 5 in the
polynomial basis and 9953 terms with order 6 in the polynomial basis. For the relevant stationary states in that
study the difference between the reference calculations and the fit ranges from 2.0 to 4.5 kcal mol . However,
the overall RMSD for all fitted points has not been reported [40]. With this PES the fragment population for
dissociation into CH; + HCO and CH, 4+ CO was investigated.

Another fruitful approach are double many body expansions [41]. These decompose the total energy of a
molecular system first into one- and several many-body terms and then represent each of them as a sum of short-
and long-range contributions [41]. This yields, for example, an RMSD of 0.99 kcal mol ' for 3701 fitted points
from electronic structure calculations at the multi reference configuration interaction (MRCI) level of theory for
CNO [42]. As a comparison, another recent investigation of the same system [43] using a reproducing kernel
Hilbert space (RKHS, see further below) representation yielded an RMSD of 0.38, 0.48 and 0.47 kcal mol ™ for
the %A/, 2A” and *A” electronic states using more than 10 000 ab initio points for each surface.

Local interpolation has also been shown to provide a meaningful approach. One such method is Shepard
interpolation which represents the PES as a weighted sum of FFs, expanded around several reference geometries
[44,45]. Also, recently several computational resources have been made available to construct fully-dimensional
PESs for polyatomic molecules such as Autosurf [46] or a repository to automatically construct PIPs.

Empirical FFs or those based on an RKHS representation can also be mixed to investigate chemical reactions.
Because traditionally, empirical force fields are designed for one connectivity, they are not a priori suitable for
studies of chemical reactions (bond breaking and bond formation). Several approaches have been devised in the
past, including multi-state adiabatic reactive MD (MS-ARMD) [47], time-based reactive MD [48], or empirical
valence bond theory (EVB) [49]. They all rely on mixing PESs for different states which provides the means to
change from one bonding pattern to another one in a continuous fashion.

3. Machine learned PESs

Machine learning (ML) methods have become increasingly popular in recent years for constructing PESs, or
estimate other properties of unknown compounds or structures [50-53]. Such approaches give computers the
ability to learn patterns in data without being explicitly programmed [54], i.e. it is not necessary to complement a
ML model with chemical knowledge. For example, no pre-conceived notion of bonding patterns needs to be
assumed. For PES construction, suitable reference data are e.g. energy, forces, or both, usually obtained from

ab initio calculations. Contrary to the explicit representations discussed in section 2, ML-based PESs are non-
parametric and not limited to a predetermined functional form.

Most ML methods used for PES construction are either kernel-based or rely on artificial neural networks
(NNs). Both variants take advantage of the fact that many nonlinear problems, such as predicting energy from
nuclear positions, can be linearised by mapping the input to a (often higher-dimensional) feature space (see
figure 1) [55]. Kernel-based methods utilize the kernel trick [56—58], which allows to operate in an implicit
feature space without explicitly computing the coordinates of data in that space (see section 3.1 for more details).
ML methods based on artificial NNs rely on ‘neuron layers’, which map their input to feature spaces by linear
transformations with learnable parameters, followed by a nonlinearity called ‘activation function’. Often, many

3



10P Publishing

Mach. Learn.: Sci. Technol. 1(2020) 013001 O T Unkeetal

(A)

40 05 00
N

x{ ~ 10410 X

Figure 1. A: The blue and red points with coordinates (x'”’, xX®) are linearly inseparable. B: By defining a suitable mapping from the
input space (x'”, x?) to a higher-dimensional feature space (x", x®, x®), blue and red points become linearly separable by a plane at

x® = 0.5 (grey).

such layers are stacked on top of each other to build increasingly complex feature spaces (see section 3.2). In the
following, both variants are discussed in more detail.

3.1.Reproducing kernel representations
Starting from a data set {(y;; x;) }fil of Nobservations y; € R given theinput x; € IRP, kernel regression aims to

estimate unknown values y,, for input x. For a PES, y is typically the total interaction energy and x is a
representation of chemical structure (i.e. a vector of internal coordinates, a molecular descriptor like the
Coulomb matrix [50], descriptors for atomic environments, e.g. symmetry functions [59], SOAP [60] or FCHL
[61,62], or arepresentation of crystal structure [63—65]). The representer theorem [66] for a functional relation
¥ = f(x) states that f(x) can always be approximated as a linear combination

fe ~fx) = ZaK x, i), ©))
i=1

where o; are coefficients and K (x, x’) is a kernel function. A function K (x, x’) is a reproducing kernel of a
Hilbert space H if the inner product (¢ (x), ¢(x’)) of H canbe expressed as K (x, x) [67]. Here, ¢ is a mapping
from the input space RP to H, i.e. ¢: R s H. Many different kernel functions are possible. Popular choices
are the polynomial kernel

K(x, x') = (x, x')4, 3)

where (-,-) denotes the dot product and d is the degree of the polynomial, or the Gaussian kernel given by

K(x, x') = e lx=xIF (4)
with hyperparameter -y that determines the width of the Gaussian and || || denotes the L*-norm. It is also possible
to include knowledge about the long range behaviour of the physical interactions into the kernel function itself
[68] and the consequences of such choices on the long- and short-range behaviour of the inter- and extrapolation
have been investigated in detail [69].

The mapping ¢ associated with the polynomial kernel (equation (3)) depends on the dimensionality of the
input x and the chosen degree d of the kernel. For example, for d = 2 and two-dimensional input vectors, the
mappingis ¢: (x;, %) — (x7 ~/2x1%, x7) and the Hilbert space  associated with the kernel function is three-
dimensional. For a Gaussian kernel, H is even co-dimensional. This can easily be seen if equation (4) is rewritten
as

K(x, x') = e xlPe=lx P2 (ox) (5)
then the Taylor expansion of the third factor e =370 o Ly (x, x'))4 reveals that the Gaussian kernel is
equivalent to an infinite sum over polynomlal kernels (scaled by constant terms). It is important to point out that
in order to apply equation (2), the mapping ¢ has never to be calculated explicitly (or even known at all) and it is

therefore possible to operate in the (high-dimensional) space H implicitly. This is often referred to as the kernel
trick [56—58].
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The coefficients «; (equation (2)) can be determined such that f(xi) = y,for allinput x;in the dataset, i.e.
a =Ky, (6)

where o = [o; -+ oy ] is the vector of coefficients, Kisan N x N matrix with entries Kjj = K(x;,x;) called
kernel matrix[70,71]and y = [y, - y]" isa vector containing the N observations y; in the data set. Since the
kernel matrix is symmetric and positive-definite by construction, Cholesky decomposition [72] can be used to
efficiently solve equation (6). Once the coefficients «; have been determined, unknown values y,, at arbitrary
positions xx can be estimated as y, = f(x*) using equation (2).

In practice however, the solution of equation (6) is only possible if the kernel matrix K is not ill-conditioned.
Fortunately, in case K is ill-conditioned, a regularized solution can be obtained for example by Tikhonov

regularization [73]. This amounts to adding a small positive constant A to the diagonal of K, such that
a= K+ )ty (7)

is solved instead of equation (6) when determining the coefficients «; (here, Iis the identity matrix). Adding

A > 0 to the diagonal of K damps the magnitude of the coefficients c and increases the smoothness of f. While
this has the effect that the known values in the data set are only approximately reproduced by equation (2), i.e.
strictly £ (x;) = ., perhaps counterintuitively, it can increase the overall quality of predictions for unknown x:
In cases where the values y; are noisy, reproducing them exactly also reproduces the noise, which is unlikely to
generalise to unknown data. Therefore, this method of determining the coefficients can also be used to prevent
over-fitting and is known as kernel ridge regression (KRR).

KRR s closely related to Gaussian process regression (GPR) [74]. In GPR, it is assumed that the N
observations {(y;; X;) }¥ | in the data set are generated by a Gaussian process, i.e. drawn from a multivariate
Gaussian distribution with zero mean, and covariance K (x, x). Note that a mean of zero can always be assumed
without loss of generality since two multivariate Gaussian distributions with equal covariance matrix can always
be transformed into each other by adding a constant term. Further, every observation y;is considered to be
related to x; through an underlying function f(x) and some observational noise (e.g. due to uncertainties in
measuring y;)

where )\ is the variance of the Gaussian noise model. The chosen covariance function K (x, x’) expresses an
assumption about the nature of f (x). For example, if the Gaussian kernel (equation (4)) is used, f(x) is assumed
to be smooth and the chosen Gaussian width y determines how rapid f(x) is allowed to change if the input x
changes.

With these assumptions, it is now possible to determine the conditional probability p(y,|y),i.e. answer the
question ‘given the data y = [y, -+ 17, howlikely s it to observe the value y, for an input x,?". Since it was
assumed that the data was drawn from a multivariate Gaussian distribution, it is possible to write

[Y*] N A/[o, [K A K! ]] ©
y K* K(X*) X*)

where Kis the kernel matrix (see equation (6)) and Ky = [K (x4, X;) -+ K (X4, Xxy)]. Then, the best (most likely)
estimate for y,. is the mean of this distribution

7, = Ke(K 4+ A ly. (10)

Thus, estimating y.. with GPR (equation (10)) is mathematically equivalent to estimating y,. with KRR (compare
to equations (2) and (7)). However, while in KRR, A is only a hyperparameter related to regularization, in GPR, A
is directly related to the magnitude of the assumed observational noise (see equation (8)). Further, the predictive
variance,

var(y,) = K (xx xx) — K«(K + AD~'K} (11)

which can also be derived from equation (9), can be useful to estimate the uncertainty of a prediction y,, i.e. how
confident the model is that its prediction is correct. Since KRR and GPR are so similar, they are both referred to
as reproducing kernel representations in this work.

3.2. Artificial neural networks
The fundamental building blocks of artificial NNs [75—81] are so-called ‘dense (neuron) layers’, which
transform input vectors x € R"n linearly to output vectors y € R"u through

y = Wx + b, (12)

where the weights W € Ru*"in and biases b € R"uw are parameters, and n;, and 1, denote the dimensionality
of input and output, respectively. A single dense layer can therefore only represent linear relations. To model
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nonlinear relationships between input and output, at least two dense layers need to be combined with a
nonlinear function o (called activation function), i.e.

h = o(Wix + b)) 13)
y = th + b2' (14)

Such an arrangement (equations (13) and (14)) has been proven to be a general function approximator, meaning
that any mapping between input x and output y can be approximated to arbitrary precision, provided that the
dimensionality of the so-called ‘hidden layer’ h is large enough [82, 83]. As such, NNs are a natural choice for
representing a PES, i.e. a mapping from chemical structure to energy (for PES construction, the output y usually
is one-dimensional and represents the energy).

While shallow NNs with a single hidden layer (see above) are in principle sufficient to solve any learning task,
in practice, deep NNs with multiple hidden layers are exponentially more parameter-efficient [84]. In a deep NN,
Thidden layers are stacked on top of each other,

h; = c(Wix + b))
h, = c(Wyhy + b,)

h; = oc(Wh,_; + b))
y = Winihy + by (15)

mapping the input x to increasingly complex feature spaces, until the features h;in the final layer are linearly
related to the outputy. The parameters of the NN, i.e. the entries in the matrices W;and vectors by, are initialized
randomly and then optimized, for example via gradient descent, to minimize a loss function that measures the
difference between the output of the NN and a given set of training data. For example, the mean squared error
(MSE) is a popular loss function for regression tasks.

The earliest NN-based PESs directly use a set of internal coordinates, e.g. distances and angles, as input for
the NN [85-89]. However, such approaches have the disadvantage that swapping symmetry equivalent atoms
may also change the numerical values of the internal coordinates. Since it is not guaranteed that a NN maps two
different inputs related by a permutation operation to the same output energy, the permutational invariance of
the PES is violated. Another disadvantage of using internal coordinates as input is that a NN trained for a single
molecule cannot be used to calculate the energy of a dimer, because they require a different number of internal
coordinates for an unambiguous description of the molecular geometry. Therefore, for small systems, PESs
based on NNs have been designed in the spirit of a many-body expansion [90-92], which circumvents these
issues. However, these approaches involve a large number of individual NN, i.e. one for each term in the many-
body expansion and scale poorly for large systems.

For larger systems, it is common practice to decompose the total energy of a chemical system into atomic
contributions, which are predicted by a single NN (or one for each element). This approach, known as high-
dimensional neural network (HDNN) [93] and first proposed by Behler and Parrinello, relies on the chemically
intuitive assumption that the contribution of an atom to the total energy depends mainly on its local
environment.

Two variants of HDNN s can be distinguished: the ‘descriptor-based’ variant uses a hand-crafted descriptor
[59, 94-96], to encode the environment of an atom, which is then used as input of a multi-layer feed-forward
NN. Examples for this kind of approach are the ‘Accurate NeurAl networK engINe for Molecular Energies’
(ANAKIN-ME or ANI) [97] or TensorMol [98]. The ‘message-passing’ [99] variant directly uses nuclear charges
and Cartesian coordinates as input and a deep neural network is used to exchange information (‘messages’)
between individual atoms, such that a representation of their chemical environments is learned directly from the
data. The deep tensor neural network [100] introduced by Schiitt et al was the first NN of this kind and has since
been refined in other NN architectures, for example SchNet [101], HIP-NN [102] or PhysNet [103]. Both types
of HDNN perform well, however, the message-passing variant is able to automatically adapt the description of
the chemical environments to the training data and the prediction task at hand and usually achieves a better
performance [104].

4. Applications

In the following, illustrative applications of explicit representations of PESs (see section 2) and machine-learned
PESs (see section 3) are discussed. PESs of sufficient quality for gas- and solution-phase reactions differ in at least
two respects. While for reactions in the gas phase, typically involving small molecules as reactants, techniques to
construct global, reactive PESs are becoming available, this is not so for reactions in solution. Often, the global
property is also not required a priori for reactions in solution. Secondly, for reactions in the gas phase all
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Figure 2. Correlation between the RKHS and MRCI+Q energies for off-grid points for *A’, A” and *A” electronic state of CNO
system. Black dashed line shows the diagonal. Data taken form [43].

interactions are typically encoded in the global, reactive PES itself, whereas for reactions in solution the
interaction between solute and solvent needs to be represented separately and explicitly. Therefore gas- and
solution-phase are discussed in two different sections 4.1 and 4.2. While PESs are often used to explore the
conformational space of a given system or study molecular (reaction) dynamics, machine-learned PESs can also
serve as an alternative to ab initio methods for exploring chemical compound space. For example, it is possible to
predict energies of molecules of different chemical composition from learning on a reference data set. Such
applications are discussed briefly in section 4.3.

4.1. Gas phase reaction dynamics

4.1.1. Multisurface, reactive dynamics for triatomics

Triatomic systems constitute an important class of systems relevant to the chemistry in the atmosphere, in
combustion and in the hypersonic regime upon reentry. Typical reactive collisions upon reentry of objects from
outer space into Earth’s atmosphere include the O+NO, O+CO, N+CO, C+NO, or N+NO reactions. Due to
the high velocities of the impacting object, temperatures up to 20 000 K can be reached. To study the reaction
dynamics at such high collision energies both, ground and lower electronically excited states need to be included.
Hence, to describe the reactive dynamics for such systems, fully dimensional, reactive PESs including multiple
electronic states are required. This is possible by using a large number of ab initio calculated energies at the MRCI
level of theory and representing the PESs using a RKHS. Alternative approaches use explicit fitting of a
parametrized form of a suitable many body expansion of the PES [41].

One example for such a system constitutes the reactive dynamics of [CNO] in the hypersonic regime at
temperatures up to T = 20 000 K [43]. The C+NO reaction is important in combustion chemistry and NO plays
acrucial role in the chemistry near the surface of a space vehicle during atmospheric reentry [105]. For this,
accurate fully dimensional PESs for the *A’, *A” and *A”states were determined and used in quantum dynamics
and quasiclassical trajectory (QCT) simulations. More than 50 000 ab initio energies were calculated at the
MRCI+Q/aug-cc-pVTZ level of theory to construct the RKHS PESs. The electronic structure calculations were
performed in grids based on Jacobi coordinates for each channel. RKHS was used to construct analytical
representations for each channel and global 3D PESs were then generated by smoothly connecting the PESs for
the three channels using switching functions. Correlation plots of the reference MRCI+Q and analytical
energies obtained from the 3D RKHS based PESs are shown in figure 2 for the three electronic states to validate
the quality of the RKHS-based global PESs. RKHS energies for different 1D cuts are compared with ab initio data
in all three channels (C+-NO, N+CO, and O4CN) for the 2A” PES in figure 3 (top panel). The lower panel of
figure 3 shows the topology of the *A’ PES for all three channels. The overall good agreement between the
ab initio and analytical energies in particular for the off-grid points in all channels and for all electronic states
confirms the high quality of the PESs.

Experimental reference data is available for the rate coefficients and branching fractions of CO and CN
products for the CCP) + NO(X 2IT) — O(C’P) + CN(X 2% 1) and N(*D)/N(*S) + CO(X 'SH) reaction [106—108].
From 40 000 QCT trajectories run at each temperature on each PES both, in an adiabatic and a nonadiabatic
fashion within a Landau—Zener [109-112] formalism, the rate coefficients and branching fractions were
determined. These rates can be directly compared with experiments and previous simulations. Figure 4 shows
the rate coefficients and branching ratios for the products. Except for the lowest temperatures (T ~ 30 K and
below) the rate coefficients agree well with experiments. This disagreement may be due to quantum effects or the
fact that experiments for T' > 50 K were carried out in Argon whereas for T' < 50 K Helium was used as the buffer
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Figure 3. Upper panel: comparison between RKHS (solid lines) and MRCI+Q (open symbols) energies for off-grid points and
different 1D cuts in Jacobi coordinates for the *A’ state and the O+CN, C+NO and N+CO channels of the CNO system. Lower panel:
Contour diagram of the 2D RKHS PESs for the three different channels of CNO in its A’ state. The diatoms are fixed at their
equilibrium geometry and the zero of energy is set to the asymptotic value for each channel. Data taken form [43].
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Figure 4. Total rate coefficients (left) and branching fractions (right) for the C(*P) + NO(X*IT) — O(C’P) + CN(X 2%+) and
N(CD)/N(*S) 4+ CO(X'L+) reaction compared with available computed [114] and experimental [106, 107, 115—117] results reported
in the literature are also shown. Results from simulations without and with nonadiabatic transitions treated at the trajectory surface
hopping (TSH) level are compared [43]. Figure adapted from [43].

gas. Furthermore, it was found that including nonadiabatic transitions leads to better agreement with
experiment within error bars but without nonadiabatic transitions the branching fractions were
underestimated, see right panel in figure 4. In addition, computed final state distributions of the products for
molecular beam-type simulations agree well with experiment. From such studies, thermal rates within an
Arrhenius formalism can be determined which can then be used in more coarse grained simulations, such as
direct simulation Monte Carlo (DSMC) [113].

4.1.2. Reactive dynamics of larger gas-phase systems

One recent application of multi state adiabatic reactive MD (MS-ARMD) and a NN-trained PES concerned the
Diels-Alder reaction between 2,3-dibromo-1,3-butadiene (DBB) and maleic anhydride (MA) [118], see figure 5.
DBB is a generic diene which fulfills the experimental requirements for conformational separation of its isomers
by electrostatic deflection of a molecular beam [119, 120], thus enabling the characterization of conformational
aspects and specificities of the reaction. MA is a widely used, activated dienophile which due to its symmetry
simplifies the possible products of the reaction. The reaction of DBB and MA thus serves as a prototypical system
well suited for the exploration of general mechanistic aspects of Diels—Alder reactions in the gas phase. The main
questions concerned the synchronicity and concertedness of the reaction and how the reaction could be
promoted. Until now, computational studies of Diels—Alder reactions including the molecular dynamics have
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Figure 5. The minimum dynamical path using the MS-ARMD (blue) and PhysNet (orange) potential energy surfaces as a function of
the C—C bonds formed: C1-C3 and C2-C4 between 2,3-dibromo-1,3-butadiene and maleic anhydride. The intrinsic reaction
coordinate (IRC) calculated at the M06-2X/6-31G™ level of theory is also shown as a dashed black line. The transition state for each
method is marked as a dot. Structures for the reactant (right, long C-C distance), TS and product (left, short C—C distance) states are
given in ball-and-stick.

started from transition state (T'S)-like structures [121-125] or have used steered dynamics [126] both of which
introduce biases and do not allow direct calculation of reaction rates.

To study the reaction in an unbiased fashion, two different reactive PESs were developed. One was based on
the MS-ARMD approach whereas the second one employed the PhysNet [103] architecture to train a NN
representation. For both representations scattering calculations were started from suitable initial conditions by
sampling the internal degrees of freedom of the reactants and the collision parameter b. It is found that the
majority of reactive collisions occur with rotational excitation and that most of them are synchronous. The
relevance of rotational degrees of freedom to promote the reaction was also found when the minimum
dynamical path [127] was calculated, see figure 5. The dynamics on both, the MS-ARMD and NN-trained PESs
are very similar although the quality of the two surfaces is different. While the NN-trained PES is able to
reproduce the training data to within 0.25 kcal mol ' on average, the RMSD between reference and
parametrized PES for MS-ARMD is 1.5 kcal mol ' over a range of 80 kcal mol . In terms of computational
efficiency, MS-ARMD is, however, ~200 times faster than PhysNet.

Another prototypical reaction scheme concerns Sy2 reactions. In a recent comparative study [128], three
reactive PESs for the [CI-CH3—Br] ™ system were constructed: Two of these PESs rely on FFs, either combined
with the MS-ARMD [47] or the MS-VALBOND [33] approach to construct the global reactive PES, whereas the
third is NN-based. While all methods are able to fit the ab initio reference data with R* > 0.99, the NN-based
PES achieves mean absolute and root mean squared deviations that are an order of magnitude lower than the
other two methods when using the same number of reference data. When increasing the size of the reference
data set, the prediction errors made by the NN-based PES are even up to three orders of magnitude lower than
for the force field-based PESs. However, at the same time, evaluating the NN-based PES is about three orders of
magnitude slower [128]. This comparative study demonstrates that different computational approaches are
similarly suitable to investigate chemical reactions in the gas phase at an atomistic level. When considering the
same reaction in solution, methods based on empirical force fields are probably still superior to more modern,
ML-based PESs. This point is considered next.

4.2.Reactions in the condensed phase

For reactions in the condensed phase, two different situations are considered in the following. In one of them,
ligands bind to a substrate anchored within a protein, such as for small diatomic ligands binding to the heme-
group in globins. In the other, the substrate is chemically transformed as is the case for the Claisen
rearrangement from chorismate to prephenate.

4.2.1. Ligand (Re- )binding in globins
Computationally, the structural dynamics accompanying NO-rebinding to Myoglobin has recently been
investigated with the aim to assign the transient, metastable structures relevant for rebinding of the ligand on
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Figure 6. The active site of Myoglobin with the heme group (sceletal) and the rebinding NO ligand with the nitrogen in yellow and the
oxygen in magenta, and the iron atom in green. The two histidine residues, His64 (to the right) and His93 (binding to the heme-iron
from below) are also shown in sceletal representation. For His64 the ‘out’ conformation is shown. Adapted from [129].

different time scales [129]. For this, reactive MD simulations using MS-ARMD simulations were run involving
the bound *A and the unbound *A states which are also probed experimentally. The energy for each of the states
was represented as a reproducing kernel [68, 129, 130] for the subspace of important system coordinates (the
heme(Fe)-NO separation and angle, and the doming coordinate of the heme-Fe) combined with an empirical
force field for all remaining degrees of freedom, see figure 6 for the active structure of Mb. Such an approach is
inspired by a decomposition of the system into a region that is modelled with high accuracy (typically a
‘quantum region’) and an environment (the ‘molecular mechanics’ part).

With a system parametrized in this fashion, extensive reactive MD simulations could be run [129]. The
kinetics for ligand rebinding is nonexponential with time scales of 10 and 100 ps. These are consistent with time
scales measured from optical, infrared, and x-ray absorption experiments and previous computational work
[48, 131-141]. The influence of the iron-out-of-plane (Fe-oop or ‘doming’) coordinate on the rebinding
reaction, as predicted by experiment [134], was directly established. The two time scales (10 and 100 ps) are
associated with two structurally different states of the His64 side chain—one ‘out’ (state A, shown in figure 6)
and one ‘in’ (state B)—which control ligand access and rebinding dynamics. Such an unequivocal assignment
was not possible from experiment [142]. In addition, the simulations provide an explanation why an
energetically feasible state for NO-binding to heme is typically not found in Mb: although the bound Fe-ON
state is alocal minimum on the PES, the energy of this state on the unbound *A manifold is lower and, hence, the
bound *A Fe-ON can not be spectroscopically characterized. The simulations finally clarify that the x-ray
absorption spectroscopy experiments are unable to distinguish between structures with photodissociated NO
‘close to’ or ‘far away’ from the heme-Fe in the active site as had been proposed [137].

In this fashion, validation of experimental results by the MD simulations and in-depth analysis of the
configurations driving the dynamics on the different time scales (10 and 100 ps) allowed to identify the structural
origins of the conformational dynamics at a molecular level, see figure 6. It is expected that further combined
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Figure 7. Free energy for the conversion of allyl vinyl ether (left) to pent-4-enal (right) in aqueous solution through the Claisen
rearrangement reaction. The potential of mean force is obtained from umbrella sampling simulations. The structures for the reactant
and product optimized at the MP2/6-3114++G(2d,2p) level of theory are also shown. Adapted from [166].

experimental and computational studies of this kind will provide the necessary insight to link energetics,
structures and dynamics in complex systems.

4.2.2. Reactions in solution

The Claisen rearrangement [143] is an important [3,3]-sigmatropic rearrangement for high stereoselective [144]
C—Cbond formation [145]. The text book example of a Claisen rearrangement is the reaction of allyl-vinyl ether
(AVE) to pent-4-enal [146], see figure 7. In polar solvent the stabilization of the TS relative to the reaction in
vacuum is the origin of the catalytic effect [147—149]. This has motivated numerous studies on enzymatic
Claisen rearrangements in particular [150—160] and reactions with related substrates [161-164]. Compared to
the reaction in aqueous solution the enzymatic catalysis of the Claisen rearrangement reaction in chorismate
mutase (CM) leads to a rate acceleration by ~1 0° due to stabilisation of the TS [165].

A reactive force field based on MS-ARMD was parametrized for AVE and used unchanged for AVE-(CO,),
and chorismate to study their Claisen rearrangements in the gas phase, in water and in the chorismate mutase
from Bacillus subtilis (BsCM) [166]. Using free energy simulations it is found that in going from AVE and
AVE-(CO,), to chorismate and using the same reactive PES the rate slows down when going from water to the
protein as the environment. A typical free energy profile for the conversion of AVE to pent-4-enal in water
together with structures for the reactant, product and TS is shown in figure 7. For the largest substrate
(chorismate) the simulations correctly find that the protein accelerates the reaction. Considering the changes of
+4.6 (AVE), +2.9 (AVE-(CO,),) and —4.4 (chorismate) kcal mol " in the activation free energies and
correlating them with the actual chemical modifications suggests that both, electrostatic stabilization (AVE —
AVE-(CO,),) and entropic contributions (AVE-(CO,) ,— chorismate, through the rigidification and larger size
of chorismate) lead to the rate enhancement observed for chorismate in CM.

As for the reaction itself it is found that for all substrates considered the O-C bond breaks prior to C—~C bond
formation. This agrees with kinetic isotope experiments according to which C-O cleavage always precedes C-C
bond formation [167]. For the nonenzymatic thermal rearrangement of chorismate to prephenate the measured
kinetic isotope effects [167, 168] indicate that at the TS the C—O bond is about 40% broken but little or no C-C
bond is formed, consistent with an analysis based on ‘More O’Ferrall-Jencks’ (MOFJ) diagrams [169, 170].

The analysis of the TS position in the active site of BsCM reveals that the lack of catalytic effect on AVE is due
to its loose positioning, insufficient interaction with and TS stabilization by the active site of the enzyme. Major
contributions to localizing the substrate in the active site of BsCM originate from the CO; groups. This together
with the probability distributions in the reactant, TS and product states suggest that entropic factors must also be
considered when interpreting differences between the systems, specifically (but not only) in the protein
environment.

4.3. Energy predictions

The systematic exploration of chemical space is a possible way to find as of yet unknown compounds with
specific properties, e.g. for medical or materials applications. For example, the GDB-17 database [171]
enumerates 166 billion small organic molecules that are potential drug candidates. However, running ab initio
calculations to determine the properties of billions of molecules is computationally infeasible. Machine-learned
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PESs were shown to reach accuracies on par with hybrid DFT methods [172] and thus can serve as an efficient
alternative to predict e.g. stabilization energy or equilibrium structures.

In order to be able to compare different approaches, benchmark datasets are used to assess the accuracy of
ML methods. One of the most popular benchmarks for this purpose is QM9 [173]. It consists of several
properties for 133 885 molecules in their minimum energy (equilibrium) geometries corresponding to a subset
of all species with up to nine heavy atoms (C, O, N, and F) out of the GDB-17 database calculated at the B3LYP/
6-31G(2df,p) level of theory [171]. For example, after training on 50 000 structures, both the PhysNet neural
network architecture [103] and KRR based on the FCHL2019 descriptor [62] achieve a mean absolute error of
~0.3 kcal mol " for predicting the energy of unseen molecules. When the FCHL2018 [61] descriptor is used in
the kernel model, the same accuracy is reached after training on just 20 000 structures. However, FCHL2018
descriptors are computationally expensive and therefore difficult to apply to larger training set sizes [62].

Itis also possible to predict other molecular properties (apart from energy) with ML methods. Interested
readers are referred to the literature [ 172], where the accuracy of different approaches for the prediction of other
properties, for example HOMO,/LUMO energies, dipole moments, polarizabilities, zero point vibrational
energies, or heat capacities has been compared. Since all molecular properties can be derived from the wave
function, recent approaches aim to directly predict the electronic wave function from nuclear coordinates [174]
or incorporate response operators into the model [175].

5. Outlook and conclusions

This section puts the methods discussed in the present overview into perspective and discusses future extensions
together with their advantages and disadvantages of the approaches discussed so far.

Reproducing kernels have been applied to generate accurate representations of PES for different triatomic
systems (3D) to study either reactive collisions or vibrational spectroscopy. The RKHS procedure can also be
applied to construct higher dimensional PESs. As an example, an RKHS representation of the 6D PES for N, is
discussed. Previously, a global PES was constructed for N, using PIPs from 16 435 CASPT2 /maug-cc-pVTZ
energies [176, 177] which are also used here. For constructing the RKHS, a total of 16 046 ab initio energies up to
1200 kcal mol " were used. The full PES is expanded in a many body expansion,

4 6 3
V() =Y VO + S VP + S VO, e ) + V5, 160 115 1), (16)

i=1 i=1 i=1

where the first term is the sum of four 1-body energies, the second term is the sum of six 2-body interaction
energies, the third term is the sum of four 3-body interaction energies and the last term is the 4-body interaction
energy. The first term is a constant which is the dissociation energy of N, to four N atoms. Each 2-body term can
be expressed by a 1D reproducing kernel polynomial and corresponding RKHS PESs can be constructed from
the diatomic N, potential. The last two terms can be expressed by a product of three and six 1D reproducing
kernel polynomials. In this work, the sum of the last two terms are calculated using RKHS interpolation of the
E®*+% energies. The sum of 3 and 4-body interaction energies (E®*#) is calculated as

4 6
ECH =V (r) — 3 ViV = 37 ViPm). (17)
i=1 i=1

For all the cases the 1D kernel function (k™ ™) with smoothness n = 2 and asymptotic decay m = 6 is used for
the radial dimensions, which is expressed as
11 1 x-

K20k, x) = —— — — 25, 18
14 x7 18 x8 {19

where, x-. and x_ are the larger and smaller values of xand x/, respectively, and the kernel smoothly decays to
zero atlong range. Symmetry of the system can also be implemented within this approach by considering all
possible combinations for the 3 and 4-body interaction energies. Here, it is worth to be mentioned that
interpolating the 3-body and 4-body terms separately should provide more accurate energies, which is however
not possible in this case as the triatomic energies are not available.

The root mean squared (RMSE) and mean absolute (MAE) errors are computed for the training data set and
tabulated in table 1. The correlation between the reference ab initio energies and RKHS interpolated energies are
reported in figure 8 with an R* = 0.9981. Elected potential energy curves for fixed bondlength r, of one N,
molecule depending on the bondlength rp of the second N, and for different N,—N, separations d and relative
orientation are shown in 9. The ab initio energies in figure 9 are not included in constructing the RKHS
representation and demonstrate that a RKHS can successfully reproduce the overall shape and values of the
unknown ab initio potential.
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Figure 8. Correlation between the RKHS and CASPT?2 energies for 16 063 training data for N, system. The black dashed line shows
ideal correlation between reference data and representation.

Table 1. Root mean squared and mean absolute errors computed for the
training data from the RKHS-based PES in different energy ranges for N,.
Units of energies are in kcal mol .

Number RMSE
Energy range of points RMSE MAE [176]
E < 100.0 678 1.4 0.8 1.8
100.0 < E < 228.0 1894 3.3 1.8 4.1
228.0 < E < 456.0 11707 6.9 3.6 7.2
456.0 < E < 1000.0 1608 16.5 9.6 18.0
1000.0 < E < 1200.0 159 9.1 4.8

Although techniques such as RKHS or PIPs can provide accurate representations, their extensions to higher
dimensions remains a challenge. Recently, the use of PIPs was demonstrated for the PES of N-methyl acetamide
which is an important step in this direction [178]. Additionally, the (symmetric) Gradient Domain Machine
Learning ((s)\GDML) approach [179, 180] has been used to construct PESs for several small organic molecules,
such as ethanol, malondialdehyde and aspirin [181]. Another challenge is to reduce the number of points
required to define such a PES. Efforts in this direction have recently shown that with as few as 300 reference
points the PES for scattering calculations in OH+H, can be described from a fit based on Gaussian processes
together with Bayesian optimization [182]. Nevertheless, such high-accuracy representations of PESs for
extended systems will remain a challenge for both, the number of high-quality reference calculations required
and the type of inter- (and extra-)polation used to represent them.

Another important aspect of accurate studies of the energetics and dynamics of molecular systems concerns
the observation, that ‘chemistry’ is often local. For example, the details of a chemical bond—its equilibrium
separation and its strength—can depend sensitively on the local environment which may play an important role
in applications such as infrared spectroscopy, as illustrated for methylated malonaldehyde, see figure 10.
Depending on the position of the proton the nature of the CO bond changes. Overall, there are four chemically
different CO bonds, two single bonds (I)A and (I)B, and two double bonds (IT)A and (II)B. In the language of an
empirical force field, the equilibrium bond lengths and the force constants change between these two structures
in a dynamical fashion, depending on the position of the transferring hydrogen atom. Capturing such effects
within an empirical FF is possible, but laborious, as was recently done for the oxalate anion [183].

Capturing such effects within a NN-trained global PES using PhysNet is more convenient. As an example,
the situation in singly-methylated malonaldehyde (acetoacetaldehyde, AAA) is considered, see figure 10. There
are two CO motifs each of which can carry the transferring hydrogen atom at the oxygen atom. Depending on
whether the hydrogen atom is at the OC—CH3 or OC-H side the chemical nature of the CO bond changes. This
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Figure 9. Comparison between the test ab initio data (symbols) and RKHS interpolated energies (solid lines) for the dissociation curves
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Figure 10. The structure and local bonding motifs in singly methylated malonaldehyde. Depending on the position of the transferring
hydrogen atom different single ((I)A and (I)B) and double ((II)A and (I)B) bonds arise. The distribution of the electrons will modify
the stretching frequencies and therefore the force constants and equilibrium bond lengths. From optimizations at the MP2 /aug-cc-
pVTZlevel the equilibrium separations of the single bonds (I)A and (I)B are 1.3224 Aand 1.3255 A which compare with 1.2475 Aand
1.2462 A for the double bonds (IDA and (II)B, respectively.

also influences the frequencies of the CO stretch vibrations. Figure 11 reports the infrared spectrum from normal
modes from MP2 /aug-cc-pVTZ calculations and from an NN trained on energies, forces and dipole moments at
the same level of theory. As is shown, the normal modes from the electronic structure calculations from the MP2/
aug-cc-pVTZ for the two isomers (top and bottom panels) differ appreciably in the range of the amide-I stretches.
Above 1600 cm ™' the harmonic frequencies occur at 1644 and 1692 cm ™' for isomer AAA1 and at 1658 and

1696 cm ™ for isomer AAA2. The NN (middle two panels) is successful in capturing the higher frequency (at 1689
and 1695 cm ™' for the two isomers, respectively) whereas for the lower frequency the two modes occur at 1635 and
1634 cm ™. Additional modes involving CO stretch vibrations occur between 1400 and 1500 cm ™. Figure 11
shows clear differences for the patterns for AAA1 and AAA2 which are correctly captured by the NN.

In a conventional force field all these frequencies would be nearly overlapping as the force field parameters
for a CO bond do usually not depend on whether a hydrogen is bonded to it or not. In order to capture such an
effect, the force field parameters for the CO bond would need to depend on the bonding pattern of the molecule
along the dynamics trajectory. Encoding such detail into a conventional force field is difficult and NN-trained
PESs offer a natural way to do so.

Another benefit yet to be explored that NN-trained PESs such as PhysNet offer is the possibility to have
fluctuating point charges for a molecule without the need to explicitly parametrize the dependence on the
geometry. Modeling such effects within an empirical force field is challenging [ 184].
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Figure 11. The infrared spectrum of methylated malonaldehyde in the region of the CO stretch region. The bands at higher frequency
(above 1600 cm " are due to C=0 bonds whereas those between 1400 and 1500 cm ™" involve a partial double bond for the CO
stretch. The top and bottom panels are for normal modes from MP2 /aug-cc-pVTZ calculations and the two middle panels from
normal modes on the trained NN using PhysNet. AAA1 and AAA?2 are the two isomers with the transferring hydrogen on the
unmethylated and methylated side, respectively.

A final challenge for high-dimensional PESs is including the chemical environment, such as the effect ofa
solvent. Immersing a chemically reacting system into an environment leads to pronounced changes. As an
example, double proton transfer in formic acid dimer (FAD) in the gas phase and in solution is considered. The
parametrization used here was adapted to yield the correct infrared spectrum in the gas phase [185]. Recent
high-resolution work has confirmed that the barrier of 7.3 kcal mol " for the gas-phase PES is compatible with
the tunneling splitting observed in microwave studies [186]. Such a barrier height makes spontaneous
transitions rare. Hence, umbrella sampling simulations were combined with the molecular mechanics with
proton transfer (MMPT) force field to determine the free energy barrier for double proton transfer in the gas
phase and in solution. As a comparison, the simulations were also carried out by using the Density-Functional
Tight-Binding (DFTB) [187, 188] method for the FAD. In both cases the solvent was water represented as the
TIP3P model [189].

The free energy barrier in the gas phase is AG = 5.4 kcal mol ' which increases to 7.5 kcal mol ' in water,
see figure 12. With DFTB3 the barrier height in solution is similar (7.3 kcal mol ") to that with the MMPT
parametrization. In all cases, FAD undergoes a concerted double proton transfer to interconvert between two
equivalent forms resulting in a symmetric free energy profile. The nature of the transition state was verified by
running 5000 structures from the umbrella sampling simulations at the TS, starting with zero velocity, and
propagating them for 1 psin an NVE ensemble. The fraction of reactants and products obtained are 0.54 and
0.46, indicating that the configurations sampled in the umbrella sampling simulations indeed correspond to a
transition state and lie midway between reactants and products and are equally likely to relax into either stable
state. The solvent distribution is reported in figure 13 and shows that far from the solute it is isotropic (magenta)
whereas closer to it it is structured (yellow). One of the open question remains to what extent solvent motion
contributes to driving double proton transfer; in other words , whether or not double proton transfer and
solvent fluctuations are coupled.

From these simulations it is also possible to determine the time to product or reactant which is reported in
the inset of figure 12. The most probable time is ~5 fs with a wide distribution extending out to to 20 fs. This is
typical for a waiting time distribution [191] and indicates that multiple degrees of freedom are involved.

The methods discussed in the present work all have their advantages and shortcomings. Depending on the
application at hand the methods provide different efficiencies and accuracies and are more or less
straightforward to apply. In the following, the three approaches discussed here are compared by looking at them
from different perspectives.

+ For small gas phase systems such as tri- and tetraatomics, RKHSs, PIPs and NN-based force fields are powerful
methods for accurate investigations of their reactive dynamics. Empirical force fields are clearly not intended
and suitable for this.
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Figure 12. Free energy as a function of reaction coordinate for proton transfer in gaseous and water-solvated FAD. The blue and red
curves show the free energy for FAD in the gas and solution phase respectively using the MMPT force field. The energy profile in black
is obtained for FAD in solution through DFTB treatment. In all cases, for the umbrella sampling procedure, 17 umbrella windows are
located at 0.1 A intervals and trajectories are propagated for 50 ps. The probability distribution from different umbrellas are

recombined using the weighted histogram analysis method (WHAM) [190].

1

Figure 13. Solvent distribution around FAD for the transition state ensemble from 100 000 transition states sampled from umbrella
sampling simulations. The two isosurfaces correspond to fractional occupancies of 10 ¢ (magenta) and 0.01 (yellow). The maximum

value of the fractional occupancy at any point is ~0.049.

For medium-sized molecules (up to ~10 atoms) in the gas phase, reactive MD methods, such as the EVB [49]

(not explicitly discussed here or multi state reactive MD), NN, or suitably parametrized force fields

(polarizable or non-polarizable) including multipoles are viable representations. PIPs or RKHSs will

eventually become laborious to parametrize and computationally expensive to evaluate.
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+ Systems with ~10 atoms in solution can be described by refined FFs and reactive MD simulations. NNs, such
as Physnet, would be a very attractive possibility, as they include fluctuating charges by construction. Also,
capturing changes in the bond character depending on the chemical environment (see discussion of
methylated MA above) is readily possible. However, an open technical question is how to include the effect of
the environment in training the NN.

+ Finally, for macromolecules in solution, such as proteins, either refined reactive FFs or a combination of
RKHS and a FF has shown to provide meaningful ways to extend quantitative, reactive simulations to
condensed phase systems. Extending such approaches, akin to mixed QM/MM simulations but treating the
reactive part with a NN, may provide even better accuracy.

Multidimensional PESs are a powerful way to run high-quality atomistic simulations for gas- and condensed
phase systems. Recent progress concerns the accurate, routine representation of PESs based on RKHSs or PIPs.
As an exciting alternative, NN-based PESs have also become available. Despite this progress, extension of these
techniques to simulations in solution and multiple dimensions remain a challenge. Attractive future possibilities
are simulations which capture the changes in local chemistry or in the atomic charges without the need to
explicitly parametrize them as a function of geometry. This is possible with approaches as those used in PhysNet.
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