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Abstract
Anoverview of computationalmethods to describe high-dimensional potential energy surfaces
suitable for atomistic simulations is given. Particular emphasis is put on accuracy, computability,
transferability and extensibility of themethods discussed. They include empirical force fields,
representations based on reproducing kernels, using permutationally invariant polynomials, neural
network-learned representations and combinations thereof. Future directions and potential improve-
ments are discussed primarily from a practical, application-oriented perspective.

1. Introduction

The dynamics ofmolecular (i.e. chemical, biological and physical)processes is governed by the underlying
intermolecular interactions. These processes can span awide range of temporal and spatial scales andmake a
characterization and the understanding of elementary processes at an atomistic scale a formidable task [1].
Examples for such processes are chemical reactions or functionalmotions in proteins. For typical organic
reactions the time scales are on the order of secondswhereas the actual chemical step (i.e. bond breaking or bond
formation) occurs on the femtosecond time scale. In other words, during∼1015 vibrational periods energy is
redistributed in the systemuntil sufficient energy has accumulated along the preferred ‘progression coordinate’
for the reaction to occur [2]. Similarly, the biological process of ‘allostery’ couples two (ormultiple) spatially
separated binding sites of a proteinwhich is used to regulate the affinity of certain substrates to a protein, thereby
controllingmetabolism [3]. According to the conventional view of allostery, a conformational change of the
protein (thatmight however be very small [4]) is the source of a signal, but othermechanisms have been
proposed as well which are based exclusively on structural dynamics [5]. Here, binding of a ligand at a so-called
allosteric site increases (or decreases) the affinity for a substrate at a distant active site, and the process can span
multiple time and spatial scales to the extent of the size of the protein itself. Hence, an allosteric protein can be
viewed as a ‘transistor’, and complicated feedback networks ofmany such switches ultimatelymake up a living
cell [6]. As a third example, freezing and phase transitions inwater are entirely governed by intermolecular
interactions. Describing them at a sufficient level of detail has been found extremely challenging and a complete,
quantitative understanding of the phase diagramor the structural dynamics of liquidwater is still not
available [7, 8].

High-dimensional energy functions also play important roles for applications inmaterial sciences and
catalysis. For example, the interaction between nanoparticles used as catalysts and their substrates can depend
sensitively on the size and shape of the nanoparticle. Hence, an accurate description of the intermolecular
interactions is required depending on the physical appearance of the particle [9] as well as for the examination of
its dynamics [10]. In surface science, accurate potential energy surfaces (PESs) are, e.g. required to investigate the
effect of substrate surface energy, orbital radii and ionization energy onmonolayermetal oxide coating stability
on supportmetal oxides [11]. Band gaps are another energetic property ofmaterials that depends on the
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composition and atomic ordering forwhich extensive information based on computation and experiment can
provide deeper insight at amolecular level [12, 13]. Such efforts have potential applications in guiding the search
for newphotoactivematerials for photocatalysis [14]. Finally, high dimensional PES are also probedwhen
investigating the dynamics and energetics of phase transitions which has recently been done formelting points
of a number ofmetalloids [15].

All the above situations requiremeans to compute—for given nuclear coordinates of all particles involved—
the total energy of the system efficiently and accurately. Themost accurate and comprehensive approach is to
solve the electronic Schrödinger equation for every nuclear configuration


x of the system forwhich energies and

forces are required.However, there are certain limitationswhich are due to the computational approach per se,
e.g. the speed and efficiency of themethod, or due to practical aspects of quantum chemistry such as accounting
for the basis set superposition error, the convergence of theHartree–Fockwavefunction to the desired electronic
state for arbitrary geometries, or the choice of a suitable active space irrespective ofmolecular geometry for
problemswithmulti-reference character, to name a few. Improvements and future avenues formaking
approaches based on quantummechanics (QM) evenmore broadly applicable have been recently discussed [16].
For problems that require extensive conformational sampling or sufficient statistics purelyQM-based dynamics
approaches are still impractical.

A promising use ofQM-basedmethods aremixedQM/molecularmechanics (QM/MM) treatments which
are particularly popular for biophysical and biochemical applications [17]. Here, the system is decomposed into
a ‘reactive region’which is treatedwith a quantum chemical (or semiempirical)method and an environment
described by an empirical forcefield. Such a decomposition considerably speeds up simulations such that even
free energy simulations inmultiple dimensions can be computed [18]. One of the current open questions in such
QM/MMsimulations is that of the size of theQMregion required for converged results [19].

Other possibilities to provide energies formolecular systems are based on empirical energy expressions, fits
of reference energies to reference data fromquantum chemical calculations, representations of the energies by
kernels or by using neural networks. Thesemethods are the topic of the present perspective as they have shown
to providemeans to follow the dynamics ofmolecular systems over long time scales or to allow statistically
significant sampling of the process of interest.

First, explicit representations of energy functions are discussed. This usually requires one to choose a
functional formof themodel function. Next,machine learned PESs are discussed. In a second part, topical
applications and an outlook for thesemethods are presented.

2. Explicit representations

Empirical forcefields (FFs) are one of themost seasoned concepts to represent the total energy of amolecular
system given the coordinates


x of all atoms. A general expression for an empirical FF includes bonded (Ebonded)

and nonbonded (Enonbonded) terms.
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Such representations can be evaluated very efficiently, the forces are readily available and systems containing
millions of atoms can be simulated for extended time scales [20]. On the other hand, the quantitative accuracy of
such force fields as comparedwith high-level electronic structuremethods is very limited. Conversely, one of the
noteworthy advantages of empirical energy functions is that they can be consistently improved, for example by
replacing harmonic potentials for chemical bonds byMorse oscillator functions or by extending conventional
point charge electrostatics throughmultipolar series expansions [21–25]. Also, additional terms can be included
to provide amore physicallymotivated representation, such as adding terms for polarization interactions [26].

While equation (1) is a general formof a FF for biomolecular applications, alternative functional forms and
other applications have also been discussed in the literature. One example is the universal forcefield forwhich
the parameters are based only on the element, its hybridization, and its connectivity [27]. It has been applied to
organic,main group inorganic and transitionmetal-containing compounds. Another example is COMPASS
(condensed-phase optimizedmolecular potentials for atomistic simulation studies)which has been applied to
study organicmolecules, inorganic smallmolecules, and polymers [28]. It relies heavily onfitting to reference
data from electronic structure calculations but also includes refinement with respect to experimental data in the
condensed phase. As a third example, DREIDING is a simple generic force field for predicting structures and
dynamics of organic, biological, andmain-group inorganicmolecules [29]. Finally, there are also FFs that are
particularly suitable to treat systems including transitionmetals or delocalized electronic structure. One of them
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is based on valence bond concepts (VALBOND) [30, 31]which has also been extended to treat electronic effects
such as the trans influence [32] or reactions [33].

For smallermolecular systemsmore accurate representations are possible. Typically, reference energies are
computed fromquantum chemical calculations on a grid (regular or irregular) ofmolecular geometries. These
energies are thenfit to parameters in a predetermined functional form tominimize the difference between the
reference energies and themodel function.

One example for such a predefined functional form are permutationally invariant polynomials (PIPs)which
have been applied tomolecules with 4–10 atoms and to investigate diverse physico-chemical problems [34].
Using PIPs, the permutational symmetry arising inmanymolecular systems is explicitly built into the
construction of the parametrized formof the PES. Themonomials are of the form ( )= -y r aexpij ij where the

rij are atom–atom separations and a is a range parameter. The total potential is then expanded into
multinomials, i.e. products ofmonomials with suitable expansion coefficients. For anA2Bmolecule the
symmetrized basis which explicitly obeys permutational symmetry is ( )+y y y y ya b c b c

12 13 23 23 13
. A library for

constructing the necessary polynomial basis has beenmade publicly available [35].
One application of PIPs includes the dissociation reaction of CH5

+ toCH3
++H2 forwhichmore than 36 000

energies [36]were fittedwith an accuracy of 78.1 cm−1.With this PES the branching ratio to formHDandH2 for
CH4D

+ andCH5
+, respectively, was determined. Also, the infrared spectra of various isotopes were computed

with this PES [37]. Other applications concern afitted energy function forwater dimer [38], which became the
basis for theWHBB force field for liquidwater [39] and that for acetaldehyde [40]. For acetaldehyde roughly
135 000 energies at the CCSD(T)/cc-pVTZ level of theorywere fitted to 2655 termswith order 5 in the
polynomial basis and 9953 termswith order 6 in the polynomial basis. For the relevant stationary states in that
study the difference between the reference calculations and the fit ranges from2.0 to 4.5 kcal mol−1. However,
the overall RMSD for allfitted points has not been reported [40].With this PES the fragment population for
dissociation intoCH3+HCOandCH4+COwas investigated.

Another fruitful approach are doublemany body expansions [41]. These decompose the total energy of a
molecular systemfirst into one- and severalmany-body terms and then represent each of them as a sumof short-
and long-range contributions [41]. This yields, for example, anRMSDof 0.99 kcal mol−1 for 3701fitted points
from electronic structure calculations at themulti reference configuration interaction (MRCI) level of theory for
CNO [42]. As a comparison, another recent investigation of the same system [43] using a reproducing kernel
Hilbert space (RKHS, see further below) representation yielded anRMSDof 0.38, 0.48 and 0.47 kcal mol−1 for
the 2A′, 2A″ and 4A″ electronic states usingmore than 10 000 ab initio points for each surface.

Local interpolation has also been shown to provide ameaningful approach. One suchmethod is Shepard
interpolationwhich represents the PES as aweighted sumof FFs, expanded around several reference geometries
[44, 45]. Also, recently several computational resources have beenmade available to construct fully-dimensional
PESs for polyatomicmolecules such as Autosurf [46] or a repository to automatically construct PIPs.

Empirical FFs or those based on anRKHS representation can also bemixed to investigate chemical reactions.
Because traditionally, empirical force fields are designed for one connectivity, they are not a priori suitable for
studies of chemical reactions (bond breaking and bond formation). Several approaches have been devised in the
past, includingmulti-state adiabatic reactiveMD (MS-ARMD) [47], time-based reactiveMD [48], or empirical
valence bond theory (EVB) [49]. They all rely onmixing PESs for different states which provides themeans to
change fromone bonding pattern to another one in a continuous fashion.

3.Machine learned PESs

Machine learning (ML)methods have become increasingly popular in recent years for constructing PESs, or
estimate other properties of unknown compounds or structures [50–53]. Such approaches give computers the
ability to learn patterns in data without being explicitly programmed [54], i.e. it is not necessary to complement a
MLmodel with chemical knowledge. For example, no pre-conceived notion of bonding patterns needs to be
assumed. For PES construction, suitable reference data are e.g. energy, forces, or both, usually obtained from
ab initio calculations. Contrary to the explicit representations discussed in section 2,ML-based PESs are non-
parametric and not limited to a predetermined functional form.

MostMLmethods used for PES construction are either kernel-based or rely on artificial neural networks
(NNs). Both variants take advantage of the fact thatmany nonlinear problems, such as predicting energy from
nuclear positions, can be linearised bymapping the input to a (often higher-dimensional) feature space (see
figure 1) [55]. Kernel-basedmethods utilize the kernel trick [56–58], which allows to operate in an implicit
feature spacewithout explicitly computing the coordinates of data in that space (see section 3.1 formore details).
MLmethods based on artificial NNs rely on ‘neuron layers’, whichmap their input to feature spaces by linear
transformationswith learnable parameters, followed by a nonlinearity called ‘activation function’. Often,many
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such layers are stacked on top of each other to build increasingly complex feature spaces (see section 3.2). In the
following, both variants are discussed inmore detail.

3.1. Reproducing kernel representations
Starting from a data set {( )}=y x;i i i

N
1ofN observations Î yi given the input Î x i

D, kernel regression aims to

estimate unknown values y* for input x*. For a PES, y is typically the total interaction energy and x is a
representation of chemical structure (i.e. a vector of internal coordinates, amolecular descriptor like the
Coulombmatrix [50], descriptors for atomic environments, e.g. symmetry functions [59], SOAP [60] or FCHL
[61, 62], or a representation of crystal structure [63–65]). The representer theorem [66] for a functional relation
y=f (x) states that f (x) can always be approximated as a linear combination

( ) ( ) ( ) ( ) å a» =
=

f f Kx x x x, , 2
i

N

i i
1

whereαi are coefficients and ( )¢K x x, is a kernel function. A function ( )¢K x x, is a reproducing kernel of a
Hilbert space if the inner product ( ) ( )f fá ¢ ñx x, of can be expressed as ( )¢K x x, [67]. Here,f is amapping
from the input space D to, i.e. f : D .Many different kernel functions are possible. Popular choices
are the polynomial kernel

( ) ( )¢ = á ¢ñK x x x x, , , 3d

where · ·á ñ, denotes the dot product and d is the degree of the polynomial, or theGaussian kernel given by

( ) ( ) ¢ = g- - ¢K x x, e 4x x 2

with hyperparameter γ that determines thewidth of theGaussian and · denotes the L2-norm. It is also possible
to include knowledge about the long range behaviour of the physical interactions into the kernel function itself
[68] and the consequences of such choices on the long- and short-range behaviour of the inter- and extrapolation
have been investigated in detail [69].

Themappingf associatedwith the polynomial kernel (equation (3)) depends on the dimensionality of the
input x and the chosen degree d of the kernel. For example, for d= 2 and two-dimensional input vectors, the
mapping is ( ) ( )f x x x x x x: , , 2 ,1 2 1

2
1 2 2

2 and theHilbert space associatedwith the kernel function is three-
dimensional. For aGaussian kernel, is even¥-dimensional. This can easily be seen if equation (4) is rewritten
as

( ) ( )   ¢ = g g g- - ¢ á ¢ñK x x, e e e 5x x x x2 ,2 2

then the Taylor expansion of the third factor ( )
!

g= å á ¢ñg á ¢ñ
=

¥ x xe 2 ,d d
dx x2 ,

0
1 reveals that theGaussian kernel is

equivalent to an infinite sumover polynomial kernels (scaled by constant terms). It is important to point out that
in order to apply equation (2), themappingfhas never to be calculated explicitly (or even known at all) and it is
therefore possible to operate in the (high-dimensional) space implicitly. This is often referred to as the kernel
trick [56–58].

Figure 1.A: The blue and red points with coordinates (x(1), x(2)) are linearly inseparable. B: By defining a suitablemapping from the
input space (x(1), x(2)) to a higher-dimensional feature space (x(1), x(2), x(3)), blue and red points become linearly separable by a plane at

( ) =x 0.53 (grey).
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The coefficientsαi (equation (2)) can be determined such that ( ) =f yx i i for all input xi in the dataset, i.e.

( )a = -K y, 61

where [ ]a a a= i N
T is the vector of coefficients,K is anN×Nmatrix with entriesKij=K(xi, xj) called

kernelmatrix [70, 71] and [ ]= y yy N1
T is a vector containing theN observations yi in the data set. Since the

kernelmatrix is symmetric and positive-definite by construction, Cholesky decomposition [72] can be used to
efficiently solve equation (6). Once the coefficients ai have been determined, unknown values y* at arbitrary
positions x* can be estimated as ( )=y f x

* * using equation (2).
In practice however, the solution of equation (6) is only possible if the kernelmatrixK is not ill-conditioned.

Fortunately, in caseK is ill-conditioned, a regularized solution can be obtained for example by Tikhonov
regularization [73]. This amounts to adding a small positive constantλ to the diagonal ofK, such that

( ) ( )a l= + -K I y 71

is solved instead of equation (6)whendetermining the coefficientsαi (here, I is the identitymatrix). Adding
λ>0 to the diagonal ofK damps themagnitude of the coefficientsa and increases the smoothness of f .While
this has the effect that the known values in the data set are only approximately reproduced by equation (2), i.e.
strictly ( ) ¹f yx i i, perhaps counterintuitively, it can increase the overall quality of predictions for unknown x*:
In cases where the values yi are noisy, reproducing them exactly also reproduces the noise, which is unlikely to
generalise to unknown data. Therefore, thismethod of determining the coefficients can also be used to prevent
over-fitting and is known as kernel ridge regression (KRR).

KRR is closely related toGaussian process regression (GPR) [74]. InGPR, it is assumed that theN
observations {( )}=y x;i i i

N
1 in the data set are generated by aGaussian process, i.e. drawn from amultivariate

Gaussian distributionwith zeromean, and covariance ( )¢K x x, . Note that amean of zero can always be assumed
without loss of generality since twomultivariate Gaussian distributionswith equal covariancematrix can always
be transformed into each other by adding a constant term. Further, every observation yi is considered to be
related to xi through an underlying function f (x) and some observational noise (e.g. due to uncertainties in
measuring yi)

( ) ( ) ( )l= + y f x 0, , 8i i

whereλ is the variance of theGaussian noisemodel. The chosen covariance function ( )¢K x x, expresses an
assumption about the nature of f (x). For example, if theGaussian kernel (equation (4)) is used, f (x) is assumed
to be smooth and the chosenGaussianwidth γdetermines how rapid f (x) is allowed to change if the input x
changes.

With these assumptions, it is nowpossible to determine the conditional probability ( ∣ )p y y
*

, i.e. answer the

question ‘given the data [ ]= y yy N1
T, how likely is it to observe the value y* for an input x*?’. Since it was

assumed that the datawas drawn fromamultivariateGaussian distribution, it is possible towrite

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟( )

( )l~ +
y K

y K I K

K x x
0,

,
, 9

T

*
*

* * *

whereK is the kernelmatrix (see equation (6)) and [ ( ) ( )]= K KK x x x x, , N1* * * . Then, the best (most likely)
estimate for y* is themean of this distribution

¯ ( ) ( )l= + -y K K I y. 101

* *
Thus, estimating y*withGPR (equation (10)) ismathematically equivalent to estimating y*withKRR (compare
to equations (2) and (7)). However, while in KRR,λ is only a hyperparameter related to regularization, inGPR,λ
is directly related to themagnitude of the assumed observational noise (see equation (8)). Further, the predictive
variance,

( ) ( ) ( ) ( )l= - + -y K x x K K I Kvar , 111 T

* * * * *

which can also be derived from equation (9), can be useful to estimate the uncertainty of a prediction y*, i.e. how
confident themodel is that its prediction is correct. Since KRR andGPR are so similar, they are both referred to
as reproducing kernel representations in this work.

3.2. Artificial neural networks
The fundamental building blocks of artificial NNs [75–81] are so-called ‘dense (neuron) layers’, which
transform input vectors Î x nin linearly to output vectors Î y nout through

( )= +y Wx b, 12

where theweights Î ´W n nout in and biases Î b nout are parameters, and nin and nout denote the dimensionality
of input and output, respectively. A single dense layer can therefore only represent linear relations. Tomodel
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nonlinear relationships between input and output, at least two dense layers need to be combinedwith a
nonlinear functionσ (called activation function), i.e.

( ) ( )s= +h W x b 131 1

( )= +y W h b . 142 2

Such an arrangement (equations (13) and (14)) has been proven to be a general function approximator,meaning
that anymapping between input x and output y can be approximated to arbitrary precision, provided that the
dimensionality of the so-called ‘hidden layer’h is large enough [82, 83]. As such,NNs are a natural choice for
representing a PES, i.e. amapping from chemical structure to energy (for PES construction, the output yusually
is one-dimensional and represents the energy).

While shallowNNswith a single hidden layer (see above) are in principle sufficient to solve any learning task,
in practice, deepNNswithmultiple hidden layers are exponentiallymore parameter-efficient [84]. In a deepNN,
lhidden layers are stacked on top of each other,

( )
( )

( )
( )



s
s

s

= +
= +

= +
= +

-

+ +

h W x b
h W h b

h Wh b
y W h b 15
l l l l

l l l

1 1 1

2 2 1 2

1

1 1

mapping the input x to increasingly complex feature spaces, until the featureshl in thefinal layer are linearly
related to the output y. The parameters of theNN, i.e. the entries in thematricesWl and vectors bl, are initialized
randomly and then optimized, for example via gradient descent, tominimize a loss function thatmeasures the
difference between the output of theNNand a given set of training data. For example, themean squared error
(MSE) is a popular loss function for regression tasks.

The earliest NN-based PESs directly use a set of internal coordinates, e.g. distances and angles, as input for
theNN [85–89]. However, such approaches have the disadvantage that swapping symmetry equivalent atoms
may also change the numerical values of the internal coordinates. Since it is not guaranteed that aNNmaps two
different inputs related by a permutation operation to the same output energy, the permutational invariance of
the PES is violated. Another disadvantage of using internal coordinates as input is that aNN trained for a single
molecule cannot be used to calculate the energy of a dimer, because they require a different number of internal
coordinates for an unambiguous description of themolecular geometry. Therefore, for small systems, PESs
based onNNs have been designed in the spirit of amany-body expansion [90–92], which circumvents these
issues.However, these approaches involve a large number of individual NNs, i.e. one for each term in themany-
body expansion and scale poorly for large systems.

For larger systems, it is commonpractice to decompose the total energy of a chemical system into atomic
contributions, which are predicted by a singleNN (or one for each element). This approach, known as high-
dimensional neural network (HDNN) [93] andfirst proposed by Behler and Parrinello, relies on the chemically
intuitive assumption that the contribution of an atom to the total energy dependsmainly on its local
environment.

Two variants ofHDNNs can be distinguished: the ‘descriptor-based’ variant uses a hand-crafted descriptor
[59, 94–96], to encode the environment of an atom,which is then used as input of amulti-layer feed-forward
NN. Examples for this kind of approach are the ‘AccurateNeurAl networK engINe forMolecular Energies’
(ANAKIN-MEorANI) [97] or TensorMol [98]. The ‘message-passing’ [99] variant directly uses nuclear charges
andCartesian coordinates as input and a deep neural network is used to exchange information (‘messages’)
between individual atoms, such that a representation of their chemical environments is learned directly from the
data. The deep tensor neural network [100] introduced by Schütt et alwas thefirstNNof this kind and has since
been refined in otherNNarchitectures, for example SchNet [101], HIP-NN [102] or PhysNet [103]. Both types
ofHDNNperformwell, however, themessage-passing variant is able to automatically adapt the description of
the chemical environments to the training data and the prediction task at hand and usually achieves a better
performance [104].

4. Applications

In the following, illustrative applications of explicit representations of PESs (see section 2) andmachine-learned
PESs (see section 3) are discussed. PESs of sufficient quality for gas- and solution-phase reactions differ in at least
two respects.While for reactions in the gas phase, typically involving smallmolecules as reactants, techniques to
construct global, reactive PESs are becoming available, this is not so for reactions in solution. Often, the global
property is also not required a priori for reactions in solution. Secondly, for reactions in the gas phase all
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interactions are typically encoded in the global, reactive PES itself, whereas for reactions in solution the
interaction between solute and solvent needs to be represented separately and explicitly. Therefore gas- and
solution-phase are discussed in two different sections 4.1 and 4.2.While PESs are often used to explore the
conformational space of a given systemor studymolecular (reaction) dynamics,machine-learned PESs can also
serve as an alternative to ab initiomethods for exploring chemical compound space. For example, it is possible to
predict energies ofmolecules of different chemical composition from learning on a reference data set. Such
applications are discussed briefly in section 4.3.

4.1. Gas phase reaction dynamics
4.1.1.Multisurface, reactive dynamics for triatomics
Triatomic systems constitute an important class of systems relevant to the chemistry in the atmosphere, in
combustion and in the hypersonic regime upon reentry. Typical reactive collisions upon reentry of objects from
outer space into Earth’s atmosphere include theO+NO,O+CO,N+CO,C+NO, orN+NO reactions. Due to
the high velocities of the impacting object, temperatures up to 20 000K can be reached. To study the reaction
dynamics at such high collision energies both, ground and lower electronically excited states need to be included.
Hence, to describe the reactive dynamics for such systems, fully dimensional, reactive PESs includingmultiple
electronic states are required. This is possible by using a large number of ab initio calculated energies at theMRCI
level of theory and representing the PESs using a RKHS. Alternative approaches use explicit fitting of a
parametrized formof a suitablemany body expansion of the PES [41].

One example for such a system constitutes the reactive dynamics of [CNO] in the hypersonic regime at
temperatures up toT= 20 000 K [43]. TheC+NOreaction is important in combustion chemistry andNOplays
a crucial role in the chemistry near the surface of a space vehicle during atmospheric reentry [105]. For this,
accurate fully dimensional PESs for the 2A′, 2A″ and 4A″states were determined and used in quantumdynamics
and quasiclassical trajectory (QCT) simulations.More than 50 000 ab initio energies were calculated at the
MRCI+Q/aug-cc-pVTZ level of theory to construct the RKHSPESs. The electronic structure calculations were
performed in grids based on Jacobi coordinates for each channel. RKHSwas used to construct analytical
representations for each channel and global 3DPESswere then generated by smoothly connecting the PESs for
the three channels using switching functions. Correlation plots of the referenceMRCI+Qand analytical
energies obtained from the 3DRKHSbased PESs are shown infigure 2 for the three electronic states to validate
the quality of the RKHS-based global PESs. RKHS energies for different 1D cuts are comparedwith ab initio data
in all three channels (C+NO,N+CO, andO+CN) for the 2A″PES infigure 3 (top panel). The lower panel of
figure 3 shows the topology of the 2A′PES for all three channels. The overall good agreement between the
ab initio and analytical energies in particular for the off-grid points in all channels and for all electronic states
confirms the high quality of the PESs.

Experimental reference data is available for the rate coefficients and branching fractions of CO andCN
products for theC(3P)+NO(X P2 )O(3P)+CN(X S+2 ) andN(2D)/N(4S)+CO(X S+1 ) reaction [106–108].
From40 000QCT trajectories run at each temperature on each PES both, in an adiabatic and a nonadiabatic
fashionwithin a Landau–Zener [109–112] formalism, the rate coefficients and branching fractionswere
determined. These rates can be directly comparedwith experiments and previous simulations. Figure 4 shows
the rate coefficients and branching ratios for the products. Except for the lowest temperatures (T∼ 30 K and
below) the rate coefficients agreewell with experiments. This disagreementmay be due to quantum effects or the
fact that experiments forT> 50 Kwere carried out in Argonwhereas forT< 50 KHeliumwas used as the buffer

Figure 2.Correlation between the RKHS andMRCI+Qenergies for off-grid points for 2A′, 2A″ and 4A″ electronic state of CNO
system. Black dashed line shows the diagonal. Data taken form [43].
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gas. Furthermore, it was found that including nonadiabatic transitions leads to better agreementwith
experiment within error bars butwithout nonadiabatic transitions the branching fractions were
underestimated, see right panel infigure 4. In addition, computed final state distributions of the products for
molecular beam-type simulations agree well with experiment. From such studies, thermal rates within an
Arrhenius formalism can be determinedwhich can then be used inmore coarse grained simulations, such as
direct simulationMonteCarlo (DSMC) [113].

4.1.2. Reactive dynamics of larger gas-phase systems
One recent application ofmulti state adiabatic reactiveMD (MS-ARMD) and aNN-trained PES concerned the
Diels-Alder reaction between 2,3-dibromo-1,3-butadiene (DBB) andmaleic anhydride (MA) [118], see figure 5.
DBB is a generic dienewhich fulfills the experimental requirements for conformational separation of its isomers
by electrostatic deflection of amolecular beam [119, 120], thus enabling the characterization of conformational
aspects and specificities of the reaction.MA is awidely used, activated dienophile which due to its symmetry
simplifies the possible products of the reaction. The reaction ofDBB andMA thus serves as a prototypical system
well suited for the exploration of generalmechanistic aspects ofDiels–Alder reactions in the gas phase. Themain
questions concerned the synchronicity and concertedness of the reaction and how the reaction could be
promoted. Until now, computational studies ofDiels–Alder reactions including themolecular dynamics have

Figure 3.Upper panel: comparison betweenRKHS (solid lines) andMRCI+Q (open symbols) energies for off-grid points and
different 1D cuts in Jacobi coordinates for the 2A′ state and theO+CN,C+NOandN+COchannels of theCNO system. Lower panel:
Contour diagramof the 2DRKHSPESs for the three different channels of CNO in its 2A′ state. The diatoms arefixed at their
equilibrium geometry and the zero of energy is set to the asymptotic value for each channel. Data taken form [43].

Figure 4.Total rate coefficients (left) and branching fractions (right) for theC(3P)+NO(X2Π)O(3P)+CN(X S+2 ) and
N(2D)/N(4S)+CO(X S+1 ) reaction comparedwith available computed [114] and experimental [106, 107, 115–117] results reported
in the literature are also shown. Results from simulations without andwith nonadiabatic transitions treated at the trajectory surface
hopping (TSH) level are compared [43]. Figure adapted from [43].
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started from transition state (TS)-like structures [121–125] or have used steered dynamics [126] both of which
introduce biases and do not allowdirect calculation of reaction rates.

To study the reaction in an unbiased fashion, two different reactive PESswere developed. Onewas based on
theMS-ARMDapproachwhereas the second one employed the PhysNet [103] architecture to train aNN
representation. For both representations scattering calculations were started from suitable initial conditions by
sampling the internal degrees of freedomof the reactants and the collision parameter b. It is found that the
majority of reactive collisions occurwith rotational excitation and thatmost of them are synchronous. The
relevance of rotational degrees of freedom to promote the reactionwas also foundwhen theminimum
dynamical path [127]was calculated, seefigure 5. The dynamics on both, theMS-ARMDandNN-trained PESs
are very similar although the quality of the two surfaces is different.While theNN-trained PES is able to
reproduce the training data towithin 0.25 kcal mol−1 on average, the RMSDbetween reference and
parametrized PES forMS-ARMD is 1.5 kcal mol−1 over a range of 80 kcal mol−1. In terms of computational
efficiency,MS-ARMD is, however,∼200 times faster than PhysNet.

Another prototypical reaction scheme concerns SN2 reactions. In a recent comparative study [128], three
reactive PESs for the [Cl–CH3–Br]

− systemwere constructed: Two of these PESs rely on FFs, either combined
with theMS-ARMD [47] or theMS-VALBOND [33] approach to construct the global reactive PES, whereas the
third isNN-based.While allmethods are able tofit the ab initio reference data withR2>0.99, theNN-based
PES achievesmean absolute and rootmean squared deviations that are an order ofmagnitude lower than the
other twomethodswhen using the same number of reference data.When increasing the size of the reference
data set, the prediction errorsmade by theNN-based PES are even up to three orders ofmagnitude lower than
for the forcefield-based PESs.However, at the same time, evaluating theNN-based PES is about three orders of
magnitude slower [128]. This comparative study demonstrates that different computational approaches are
similarly suitable to investigate chemical reactions in the gas phase at an atomistic level.When considering the
same reaction in solution,methods based on empirical forcefields are probably still superior tomoremodern,
ML-based PESs. This point is considered next.

4.2. Reactions in the condensed phase
For reactions in the condensed phase, two different situations are considered in the following. In one of them,
ligands bind to a substrate anchoredwithin a protein, such as for small diatomic ligands binding to the heme-
group in globins. In the other, the substrate is chemically transformed as is the case for theClaisen
rearrangement from chorismate to prephenate.

4.2.1. Ligand (Re-)binding in globins
Computationally, the structural dynamics accompanyingNO-rebinding toMyoglobin has recently been
investigatedwith the aim to assign the transient,metastable structures relevant for rebinding of the ligand on

Figure 5.Theminimumdynamical path using theMS-ARMD (blue) and PhysNet (orange) potential energy surfaces as a function of
the C–Cbonds formed: C1-C3 andC2-C4 between 2,3-dibromo-1,3-butadiene andmaleic anhydride. The intrinsic reaction
coordinate (IRC) calculated at theM06-2X/6-31G* level of theory is also shown as a dashed black line. The transition state for each
method ismarked as a dot. Structures for the reactant (right, longC–Cdistance), TS and product (left, short C–Cdistance) states are
given in ball-and-stick.
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different time scales [129]. For this, reactiveMD simulations usingMS-ARMDsimulationswere run involving
the bound 2A and the unbound 4A states which are also probed experimentally. The energy for each of the states
was represented as a reproducing kernel [68, 129, 130] for the subspace of important system coordinates (the
heme(Fe)–NOseparation and angle, and the doming coordinate of the heme-Fe) combinedwith an empirical
forcefield for all remaining degrees of freedom, see figure 6 for the active structure ofMb. Such an approach is
inspired by a decomposition of the system into a region that ismodelledwith high accuracy (typically a
‘quantum region’) and an environment (the ‘molecularmechanics’ part).

With a systemparametrized in this fashion, extensive reactiveMD simulations could be run [129]. The
kinetics for ligand rebinding is nonexponential with time scales of 10 and 100 ps. These are consistent with time
scalesmeasured fromoptical, infrared, and x-ray absorption experiments and previous computational work
[48, 131–141]. The influence of the iron-out-of-plane (Fe-oop or ‘doming’) coordinate on the rebinding
reaction, as predicted by experiment [134], was directly established. The two time scales (10 and 100 ps) are
associatedwith two structurally different states of theHis64 side chain—one ‘out’ (state A, shown infigure 6)
and one ‘in’ (state B)—which control ligand access and rebinding dynamics. Such an unequivocal assignment
was not possible from experiment [142]. In addition, the simulations provide an explanationwhy an
energetically feasible state forNO-binding to heme is typically not found inMb: although the bound Fe-ON
state is a localminimumon the PES, the energy of this state on the unbound 4Amanifold is lower and, hence, the
bound 2A Fe-ON can not be spectroscopically characterized. The simulations finally clarify that the x-ray
absorption spectroscopy experiments are unable to distinguish between structures with photodissociatedNO
‘close to’ or ‘far away’ from the heme-Fe in the active site as had been proposed [137].

In this fashion, validation of experimental results by theMD simulations and in-depth analysis of the
configurations driving the dynamics on the different time scales (10 and 100 ps) allowed to identify the structural
origins of the conformational dynamics at amolecular level, see figure 6. It is expected that further combined

Figure 6.The active site ofMyoglobinwith the heme group (sceletal) and the rebindingNO ligandwith the nitrogen in yellow and the
oxygen inmagenta, and the iron atom in green. The two histidine residues,His64 (to the right) andHis93 (binding to the heme-iron
frombelow) are also shown in sceletal representation. ForHis64 the ‘out’ conformation is shown. Adapted from [129].
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experimental and computational studies of this kindwill provide the necessary insight to link energetics,
structures and dynamics in complex systems.

4.2.2. Reactions in solution
TheClaisen rearrangement [143] is an important [3,3]-sigmatropic rearrangement for high stereoselective [144]
C–Cbond formation [145]. The text book example of a Claisen rearrangement is the reaction of allyl-vinyl ether
(AVE) to pent-4-enal [146], see figure 7. In polar solvent the stabilization of the TS relative to the reaction in
vacuum is the origin of the catalytic effect [147–149]. This hasmotivated numerous studies on enzymatic
Claisen rearrangements in particular [150–160] and reactionswith related substrates [161–164]. Compared to
the reaction in aqueous solution the enzymatic catalysis of theClaisen rearrangement reaction in chorismate
mutase (CM) leads to a rate acceleration by∼106 due to stabilisation of the TS [165].

A reactive forcefield based onMS-ARMDwas parametrized for AVE and used unchanged for AVE-(CO2)2
and chorismate to study their Claisen rearrangements in the gas phase, inwater and in the chorismatemutase
fromBacillus subtilis (BsCM) [166]. Using free energy simulations it is found that in going fromAVE and
AVE-(CO2)2 to chorismate and using the same reactive PES the rate slows downwhen going fromwater to the
protein as the environment. A typical free energy profile for the conversion of AVE to pent-4-enal inwater
togetherwith structures for the reactant, product andTS is shown infigure 7. For the largest substrate
(chorismate) the simulations correctly find that the protein accelerates the reaction. Considering the changes of
+4.6 (AVE),+2.9 (AVE-(CO2)2) and−4.4 (chorismate) kcal mol−1 in the activation free energies and
correlating themwith the actual chemicalmodifications suggests that both, electrostatic stabilization (AVE
AVE-(CO2)2) and entropic contributions (AVE-(CO2) 2 chorismate, through the rigidification and larger size
of chorismate) lead to the rate enhancement observed for chorismate inCM.

As for the reaction itself it is found that for all substrates considered theO–Cbond breaks prior toC–Cbond
formation. This agrees with kinetic isotope experiments according towhichC–Ocleavage always precedes C–C
bond formation [167]. For the nonenzymatic thermal rearrangement of chorismate to prephenate themeasured
kinetic isotope effects [167, 168] indicate that at the TS theC–Obond is about 40%broken but little or noC–C
bond is formed, consistent with an analysis based on ‘MoreO’Ferrall-Jencks’ (MOFJ) diagrams [169, 170].

The analysis of the TS position in the active site of BsCMreveals that the lack of catalytic effect onAVE is due
to its loose positioning, insufficient interactionwith andTS stabilization by the active site of the enzyme.Major
contributions to localizing the substrate in the active site of BsCMoriginate from theCO2

− groups. This together
with the probability distributions in the reactant, TS and product states suggest that entropic factorsmust also be
consideredwhen interpreting differences between the systems, specifically (but not only) in the protein
environment.

4.3. Energy predictions
The systematic exploration of chemical space is a possible way tofind as of yet unknown compoundswith
specific properties, e.g. formedical ormaterials applications. For example, theGDB-17 database [171]
enumerates 166 billion small organicmolecules that are potential drug candidates. However, running ab initio
calculations to determine the properties of billions ofmolecules is computationally infeasible.Machine-learned

Figure 7. Free energy for the conversion of allyl vinyl ether (left) to pent-4-enal (right) in aqueous solution through theClaisen
rearrangement reaction. The potential ofmean force is obtained fromumbrella sampling simulations. The structures for the reactant
and product optimized at theMP2/6-311++G(2d,2p) level of theory are also shown. Adapted from [166].
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PESswere shown to reach accuracies on parwith hybridDFTmethods [172] and thus can serve as an efficient
alternative to predict e.g. stabilization energy or equilibrium structures.

In order to be able to compare different approaches, benchmark datasets are used to assess the accuracy of
MLmethods. One of themost popular benchmarks for this purpose is QM9 [173]. It consists of several
properties for 133 885molecules in theirminimumenergy (equilibrium) geometries corresponding to a subset
of all species with up to nine heavy atoms (C,O,N, and F) out of theGDB-17 database calculated at the B3LYP/
6-31G(2df,p) level of theory [171]. For example, after training on 50 000 structures, both the PhysNet neural
network architecture [103] andKRRbased on the FCHL2019 descriptor [62] achieve amean absolute error of
≈0.3 kcal mol−1 for predicting the energy of unseenmolecules.When the FCHL2018 [61] descriptor is used in
the kernelmodel, the same accuracy is reached after training on just 20 000 structures. However, FCHL2018
descriptors are computationally expensive and therefore difficult to apply to larger training set sizes [62].

It is also possible to predict othermolecular properties (apart from energy)withMLmethods. Interested
readers are referred to the literature [172], where the accuracy of different approaches for the prediction of other
properties, for exampleHOMO/LUMOenergies, dipolemoments, polarizabilities, zero point vibrational
energies, or heat capacities has been compared. Since allmolecular properties can be derived from thewave
function, recent approaches aim to directly predict the electronic wave function fromnuclear coordinates [174]
or incorporate response operators into themodel [175].

5.Outlook and conclusions

This section puts themethods discussed in the present overview into perspective and discusses future extensions
togetherwith their advantages and disadvantages of the approaches discussed so far.

Reproducing kernels have been applied to generate accurate representations of PES for different triatomic
systems (3D) to study either reactive collisions or vibrational spectroscopy. The RKHS procedure can also be
applied to construct higher dimensional PESs. As an example, anRKHS representation of the 6DPES forN4 is
discussed. Previously, a global PESwas constructed forN4 using PIPs from16 435CASPT2/maug-cc-pVTZ
energies [176, 177]which are also used here. For constructing the RKHS, a total of 16 046 ab initio energies up to
1200 kcal mol−1 were used. The full PES is expanded in amany body expansion,
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where thefirst term is the sumof four 1-body energies, the second term is the sumof six 2-body interaction
energies, the third term is the sumof four 3-body interaction energies and the last term is the 4-body interaction
energy. Thefirst term is a constant which is the dissociation energy ofN4 to fourN atoms. Each 2-body term can
be expressed by a 1D reproducing kernel polynomial and corresponding RKHSPESs can be constructed from
the diatomicN2 potential. The last two terms can be expressed by a product of three and six 1D reproducing
kernel polynomials. In this work, the sumof the last two terms are calculated using RKHS interpolation of the
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For all the cases the 1D kernel function (k n,m)with smoothness n= 2 and asymptotic decaym=6 is used for
the radial dimensions, which is expressed as
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where, x> and x< are the larger and smaller values of x and ¢x , respectively, and the kernel smoothly decays to
zero at long range. Symmetry of the system can also be implementedwithin this approach by considering all
possible combinations for the 3 and 4-body interaction energies. Here, it is worth to bementioned that
interpolating the 3-body and 4-body terms separately should providemore accurate energies, which is however
not possible in this case as the triatomic energies are not available.

The rootmean squared (RMSE) andmean absolute (MAE) errors are computed for the training data set and
tabulated in table 1. The correlation between the reference ab initio energies andRKHS interpolated energies are
reported infigure 8with anR2=0.9981. Elected potential energy curves forfixed bondlength rA of oneN2

molecule depending on the bondlength rB of the secondN2 and for differentN2–N2 separations d and relative
orientation are shown in 9. The ab initio energies infigure 9 are not included in constructing the RKHS
representation and demonstrate that a RKHS can successfully reproduce the overall shape and values of the
unknown ab initio potential.
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Although techniques such as RKHSor PIPs can provide accurate representations, their extensions to higher
dimensions remains a challenge. Recently, the use of PIPswas demonstrated for the PES ofN-methyl acetamide
which is an important step in this direction [178]. Additionally, the (symmetric)Gradient DomainMachine
Learning ((s)GDML) approach [179, 180] has been used to construct PESs for several small organicmolecules,
such as ethanol,malondialdehyde and aspirin [181]. Another challenge is to reduce the number of points
required to define such a PES. Efforts in this direction have recently shown that with as few as 300 reference
points the PES for scattering calculations inOH+H2 can be described fromafit based onGaussian processes
togetherwith Bayesian optimization [182]. Nevertheless, such high-accuracy representations of PESs for
extended systemswill remain a challenge for both, the number of high-quality reference calculations required
and the type of inter- (and extra-)polation used to represent them.

Another important aspect of accurate studies of the energetics and dynamics ofmolecular systems concerns
the observation, that ‘chemistry’ is often local. For example, the details of a chemical bond—its equilibrium
separation and its strength—can depend sensitively on the local environment whichmay play an important role
in applications such as infrared spectroscopy, as illustrated formethylatedmalonaldehyde, see figure 10.
Depending on the position of the proton the nature of theCObond changes. Overall, there are four chemically
different CObonds, two single bonds (I)A and (I)B, and two double bonds (II)A and (II)B. In the language of an
empirical force field, the equilibriumbond lengths and the force constants change between these two structures
in a dynamical fashion, depending on the position of the transferring hydrogen atom. Capturing such effects
within an empirical FF is possible, but laborious, as was recently done for the oxalate anion [183].

Capturing such effects within aNN-trained global PES using PhysNet ismore convenient. As an example,
the situation in singly-methylatedmalonaldehyde (acetoacetaldehyde, AAA) is considered, see figure 10. There
are twoCOmotifs each of which can carry the transferring hydrogen atomat the oxygen atom.Depending on
whether the hydrogen atom is at theOC–CH3 orOC–Hside the chemical nature of theCObond changes. This

Table 1.Rootmean squared andmean absolute errors computed for the
training data from theRKHS-based PES in different energy ranges forN4.
Units of energies are in kcal mol−1.

Energy range

Number

of points RMSE MAE

RMSE

[176]

E�100.0 678 1.4 0.8 1.8

100.0<E�228.0 1894 3.3 1.8 4.1

228.0<E�456.0 11 707 6.9 3.6 7.2

456.0<E�1000.0 1608 16.5 9.6 18.0

1000.0<E<1200.0 159 9.1 4.8

Figure 8.Correlation between the RKHS andCASPT2 energies for 16 063 training data forN4 system. The black dashed line shows
ideal correlation between reference data and representation.
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also influences the frequencies of theCOstretch vibrations. Figure 11 reports the infrared spectrum fromnormal
modes fromMP2/aug-cc-pVTZcalculations and fromanNNtrainedon energies, forces anddipolemoments at
the same level of theory.As is shown, the normalmodes from the electronic structure calculations from theMP2/
aug-cc-pVTZ for the two isomers (top andbottompanels)differ appreciably in the range of the amide-I stretches.
Above 1600 cm−1 the harmonic frequencies occur at 1644 and 1692 cm−1 for isomerAAA1and at 1658 and
1696 cm−1 for isomerAAA2. TheNN (middle twopanels) is successful in capturing the higher frequency (at 1689
and1695 cm−1 for the two isomers, respectively)whereas for the lower frequency the twomodes occur at 1635 and
1634 cm−1. Additionalmodes involvingCOstretch vibrations occur between1400 and 1500 cm−1. Figure 11
shows clear differences for the patterns forAAA1andAAA2which are correctly captured by theNN.

In a conventional force field all these frequencies would be nearly overlapping as the forcefield parameters
for aCObond do usually not depend onwhether a hydrogen is bonded to it or not. In order to capture such an
effect, the force field parameters for theCObondwould need to depend on the bonding pattern of themolecule
along the dynamics trajectory. Encoding such detail into a conventional forcefield is difficult andNN-trained
PESs offer a natural way to do so.

Another benefit yet to be explored thatNN-trained PESs such as PhysNet offer is the possibility to have
fluctuating point charges for amolecule without the need to explicitly parametrize the dependence on the
geometry.Modeling such effects within an empirical force field is challenging [184].

Figure 9.Comparison between the test ab initio data (symbols) andRKHS interpolated energies (solid lines) for the dissociation curves
N3-N4 (along rB) forN2 + N2 systemwithN1-N2fixed at rA. The angle between


rA and


rB is defined asf. (a) rA=1.098 Å,

d=3.0 Å, θA=θB=90°,f=0° (b) rA=1.098 Å, d=2.4 Å, θA=θB=60°,f=0° (c) rA=1.098 Å, d=1.8 Å,
θA=θB=90°,f=90° (d) rA=1.098 Å, d=2.0 Å, θA=0°, θB=90°,f = 0° (e) rA=1.098 Å, d=4.0 Å, θA=120°,
θB=60°,f=0° (f) rA=1.298 Å, d=2.6 Å, θA=0°, θB=60°,f=0° (g) rA=0.898 Å, d=3.0 Å, θA=0°, θB=60°,f=0°
(h) rA=1.098 Å, d=2.4 Å, θA=0°, θB=90°,f=0°.

Figure 10.The structure and local bondingmotifs in singlymethylatedmalonaldehyde. Depending on the position of the transferring
hydrogen atomdifferent single ((I)Aand (I)B) and double ((II)A and (II)B) bonds arise. The distribution of the electrons willmodify
the stretching frequencies and therefore the force constants and equilibriumbond lengths. Fromoptimizations at theMP2/aug-cc-
pVTZ level the equilibrium separations of the single bonds (I)A and (I)B are 1.3224 Å and 1.3255 Åwhich compare with 1.2475 Å and
1.2462 Å for the double bonds (II)Aand (II)B, respectively.
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Afinal challenge for high-dimensional PESs is including the chemical environment, such as the effect of a
solvent. Immersing a chemically reacting system into an environment leads to pronounced changes. As an
example, double proton transfer in formic acid dimer (FAD) in the gas phase and in solution is considered. The
parametrization used herewas adapted to yield the correct infrared spectrum in the gas phase [185]. Recent
high-resolutionwork has confirmed that the barrier of 7.3 kcal mol−1 for the gas-phase PES is compatible with
the tunneling splitting observed inmicrowave studies [186]. Such a barrier heightmakes spontaneous
transitions rare. Hence, umbrella sampling simulationswere combinedwith themolecularmechanics with
proton transfer (MMPT) force field to determine the free energy barrier for double proton transfer in the gas
phase and in solution. As a comparison, the simulationswere also carried out by using theDensity-Functional
Tight-Binding (DFTB) [187, 188]method for the FAD. In both cases the solvent waswater represented as the
TIP3Pmodel [189].

The free energy barrier in the gas phase isΔG= 5.4 kcal mol−1 which increases to 7.5 kcal mol−1 inwater,
see figure 12.WithDFTB3 the barrier height in solution is similar (7.3 kcal mol−1) to thatwith theMMPT
parametrization. In all cases, FADundergoes a concerted double proton transfer to interconvert between two
equivalent forms resulting in a symmetric free energy profile. The nature of the transition state was verified by
running 5000 structures from the umbrella sampling simulations at the TS, startingwith zero velocity, and
propagating them for 1 ps in anNVE ensemble. The fraction of reactants and products obtained are 0.54 and
0.46, indicating that the configurations sampled in the umbrella sampling simulations indeed correspond to a
transition state and liemidway between reactants and products and are equally likely to relax into either stable
state. The solvent distribution is reported infigure 13 and shows that far from the solute it is isotropic (magenta)
whereas closer to it it is structured (yellow). One of the open question remains towhat extent solventmotion
contributes to driving double proton transfer; in otherwords , whether or not double proton transfer and
solventfluctuations are coupled.

From these simulations it is also possible to determine the time to product or reactant which is reported in
the inset offigure 12. Themost probable time is∼5 fs with awide distribution extending out to to 20 fs. This is
typical for a waiting time distribution [191] and indicates thatmultiple degrees of freedom are involved.

Themethods discussed in the present work all have their advantages and shortcomings. Depending on the
application at hand themethods provide different efficiencies and accuracies and aremore or less
straightforward to apply. In the following, the three approaches discussed here are compared by looking at them
fromdifferent perspectives.

• For small gas phase systems such as tri- and tetraatomics, RKHSs, PIPs andNN-based force fields are powerful
methods for accurate investigations of their reactive dynamics. Empirical force fields are clearly not intended
and suitable for this.

Figure 11.The infrared spectrumofmethylatedmalonaldehyde in the region of theCO stretch region. The bands at higher frequency
(above 1600 cm−1 are due toC=Obondswhereas those between 1400 and 1500 cm−1 involve a partial double bond for theCO
stretch. The top and bottompanels are for normalmodes fromMP2/aug-cc-pVTZ calculations and the twomiddle panels from
normalmodes on the trainedNNusing PhysNet. AAA1 andAAA2 are the two isomers with the transferring hydrogen on the
unmethylated andmethylated side, respectively.
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• Formedium-sizedmolecules (up to∼10 atoms) in the gas phase, reactiveMDmethods, such as the EVB [49]
(not explicitly discussed here ormulti state reactiveMD), NNs, or suitably parametrized force fields
(polarizable or non-polarizable) includingmultipoles are viable representations. PIPs or RKHSswill
eventually become laborious to parametrize and computationally expensive to evaluate.

Figure 12. Free energy as a function of reaction coordinate for proton transfer in gaseous andwater-solvated FAD. The blue and red
curves show the free energy for FAD in the gas and solution phase respectively using theMMPT force field. The energy profile in black
is obtained for FAD in solution throughDFTB treatment. In all cases, for the umbrella sampling procedure, 17 umbrella windows are
located at 0.1 Å intervals and trajectories are propagated for 50 ps. The probability distribution fromdifferent umbrellas are
recombined using theweighted histogram analysismethod (WHAM) [190].

Figure 13. Solvent distribution around FAD for the transition state ensemble from100 000 transition states sampled fromumbrella
sampling simulations. The two isosurfaces correspond to fractional occupancies of 10−6 (magenta) and 0.01 (yellow). Themaximum
value of the fractional occupancy at any point is∼0.049.
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• Systemswith∼10 atoms in solution can be described by refined FFs and reactiveMD simulations. NNs, such
as Physnet, would be a very attractive possibility, as they includefluctuating charges by construction. Also,
capturing changes in the bond character depending on the chemical environment (see discussion of
methylatedMA above) is readily possible. However, an open technical question is how to include the effect of
the environment in training theNN.

• Finally, formacromolecules in solution, such as proteins, either refined reactive FFs or a combination of
RKHS and a FF has shown to providemeaningful ways to extend quantitative, reactive simulations to
condensed phase systems. Extending such approaches, akin tomixedQM/MMsimulations but treating the
reactive part with aNN,may provide even better accuracy.

Multidimensional PESs are a powerful way to run high-quality atomistic simulations for gas- and condensed
phase systems. Recent progress concerns the accurate, routine representation of PESs based onRKHSs or PIPs.
As an exciting alternative, NN-based PESs have also become available. Despite this progress, extension of these
techniques to simulations in solution andmultiple dimensions remain a challenge. Attractive future possibilities
are simulationswhich capture the changes in local chemistry or in the atomic charges without the need to
explicitly parametrize them as a function of geometry. This is possible with approaches as those used in PhysNet.
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