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ABSTRACT 
 

Despite the choice of Al-Mg-Si alloy as a material for innumerable industrial and structural 
applications, challenges such as undesired scratch resistance, formability and mechanical 
properties deterioration in saline environment hinders the extent of its application for automotive 
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and aerospace components. Nevertheless, with the growing interest in the application of Al-Mg-Si 
alloy in automotive and aerospace industries, there is need for cautious control of thermal 
treatments and inclusion of alloying elements with requisite potentials for enhancing the 
microstructure and mechanical properties of the alloy. Chromium is known to improve strength and 
corrosion resistance in several applications. Therefore, this study focuses on the investigation of 
the effect of Cr particles inclusion in Al-Mg-Si alloy.  The effect of ageing heat treatment on selected 
properties of Al-Mg-Si-Cr alloy was also studied in this work. The Al-Mg-Si and Al-Mg-Si-Cr alloys 
were developed using a two-step stir casting technique. Chromium was added to Al-Mg-Si alloy at 
varying percentages of 0, 0.5, 1.0, 1.5, 2.0 and 2.5. All the samples were solution treated in an 
electric furnace at 500 

o
C for 30 minutes and water quenched. Then the samples were artificially 

aged at 210 
o
C for 3 hours and quenched in natural air. The hardness test revealed that the 

inclusion of Cr particles in Al-Mg-Si alloy samples increased hardness from 35.03 Kgf/mm
2
 

(hardness of Al-Mg-Si-0%Cr alloy sample) to a maximum value of 126.54 Kgf/mm
2
 (hardness of Al-

Mg-Si-1.5%Cr alloy sample). After heat treatment, the hardness of Al-Mg-Si-0%Cr alloy sample 
increased to 80.84 Kgf/mm

2
, while that of Al-Mg-Si-1.5%Cr alloy sample decreased slightly to 

120.88 Kgf/mm
2
. The impact strength test also showed that the inclusion of Cr in Al-Mg-Si alloy 

increased impact strength from 9.52 J/mm
2
 (impact strength of Al-Mg-Si-0%Cr alloy sample) to a 

maximum value of 19.04 J/mm
2
 (impact strength of Al-Mg-Si-2.0%Cr alloy sample). After heat 

treatment, the impact strength of Al-Mg-Si-0%Cr alloy sample increased marginally to 10.09 J/mm
2
, 

while that of Al-Mg-Si-2.0%Cr alloy sample decreased slightly to 17.57 J/mm
2
. The tensile and 

electrochemical tests revealed that the heat-treated Al-Mg-Si-1.0%Cr alloy sample exhibited the 
highest tensile strength and lowest corrosion rate of 152 MPa and 0.0014 mm/year, respectively. 
The microstructural examination further revealed that the inclusion of Cr particles in Al-Mg-Si alloy 
improved its surface morphology. Al-Mg-Si-1.0%Cr alloy sample was adjudged to possess the best 
microstructural properties. Therefore, this sample is recommended as a potential material for 
machine tools and other structural or advanced manufacturing applications.  
 

 
Keywords:   Al-Mg-Si; Al-Mg-Si-Cr; chromium; mechanical properties; microstructure and corrosion 

rate. 
 

ABBREVIATIONS 
 

SEM : Scanning electron microscope 
ASTM : American society for testing and   
               materials 
CR : Corrosion rate 
OCP : Open circuit potential 
jcorr : Corrosion current density 
Rp : Polarization resistance 
Ecorr : Corrosion potential 
 

1. INTRODUCTION 
 

Aluminium alloys are widely used in the 
automotive industry as an alternative material to 
steel. The attraction for Al alloys is due to their 
low density, recyclability, superior mechanical 
properties and good corrosion resistance [1-3]. 
The corrosion resistance property of Al alloys is 
as a result of the stability of the aluminium oxide 
layer formation on exposure to air [4-6]. Material 
designers have also shifted emphasis to the 
pursuit of low cost and high-performance 
characteristics materials like Al alloys, which are 
suitable for the products required [7,8].  The 
scope of these materials is further expanded with 
the help of post-processing treatment and 

alloying elements, which combines the individual 
properties of those materials to create the 
desired products properties [9,10]. Post-
processing treatments such as heat treatment 
have played major roles in recent developments 
in this field since it promotes a general 
refinement of the microstructure and improves 
the physical properties of alloys [11-13]. Heat-
treatment has also been reported to improve the 
strength of aluminium alloys through a process 
known as precipitation-hardening which occurs 
during the heating and cooling of the alloy, with 
the formation of precipitates matrix of the alloy 
[14-16]. Likewise, ageing heat treatment has 
been used for the improvement of the 
microstructure of aluminium alloys. Two different 
methods of ageing: artificial and natural ageing 
have been reported in many works of literature 
[17-19].  

 
Moreso, microstructure and other properties of 
aluminium alloys have been improved through 
the addition of alloying elements such as Si, Mn, 
Cr, Cu, Zn, Sn, Ag, Fe, e.t.c [20-22]. For 
instance, some of these alloying elements have 
been included in Al-Mg-Si alloys by a good 
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number of researchers to produce a selection of 
different materials that can be used in a wide 
assortment of structural applications [23-26]. 
Chromium was discovered to increase the low-
temperature properties and enhanced the creep 
resistance of Al-Mg-Si alloys marginally [27,28]. 
The study also revealed that Mn and Cr additions 
affect the kinetics of recrystallization and 
parameters of grain-boundary relaxation of Al-
4.9Mg alloys. The Cr particles helps in 
preventing recrystallization and grain growth, 
hence refining the grains [29]. Chromium has 
been used as alloy addition to AA6xxx alloys to 
control the grain structure by producing 
dispersoids that pin grains and limit grain growth. 
Thus, the mechanical properties of the aluminium 
alloys were improved [30]. Grain refinement 
plays a vital function in determining the 
significant characteristics of aluminium alloy 
products. It enhances plasticity and tensile 
intensities, increases feeding complex castings, 
and minimizes the possibility of hot tearing and 
porosity [31,32].  
 

Furthermore, chromium is a common addition to 
many alloys of the aluminium–magnesium series 
because it has a large effect on electrical 
resistivity. Chromium has a low diffusion rate and 
forms finely dispersed phases in wrought 
products. Extensive literature studies indicate 
that major work has been carried out on Al-Mg-
Si-Cr alloy for many structural applications. The 
need to improve the properties and quality of 
aluminium alloy using simple foundry and 
conventional casting technique for the economic 
development of aluminium alloy instigates the 
need for this work. Al-Mg-Si alloy has been 
widely used for several industrial and structural 
applications [33-36]. However, due to a few 
challenges, it is rarely used for some advanced 
structural applications. The main aim of this work 
is to examine the effect of chromium addition on 
the mechanical, microstructural and corrosion 
properties of Al-Mg-Si alloy. This work further 
examined the effect of heat treatment on the 
mechanical, microstructural and corrosion 
characteristics of Al-Mg-Si-Cr alloys. Heat-
treating the alloys containing the appropriate 
percentage of Cr particles was done and 
examined for potential machine tools 
applications. 
 

2. MATERIALS AND METHODS 
 

2.1 Alloy Production 
 

Aluminium scrap (mostly trophy beverage cans) 
was sourced and used as the base aluminium 

alloy. This decision was made to show that 
aluminium waste in our environment can be 
converted into a very good choice material for 
different kinds of engineering applications. Using 
optical emission spectroscopy, the approximate 
chemical compositions of the alloy are: 1.50% 
manganese (Mn), 0.70% iron (Fe), 0.20% copper 
(Cu), 0.05% magnesium (Mg), 0.60% silicon (Si), 
0.10% zinc (Zn) and Al balance as the principal 
element. This characterization revealed that the 
alloy is Al 3003 alloy. These are similar to those 
of authors Ref. [37]. The volume percentage by 
weight of magnesium and silicon was constant at 
0.6% and 7%, respectively for all the samples. 
The mass of Al 3003 alloy was also constant at 
500 g for all the samples. The chemical 
composition of the experimental alloys is shown 
in Table 1, which indicated that chromium was 
incorporated into Al-Mg-Si composite at levels of 
0, 0.5,1, 1.5, 2 and 2.5% using the two-step stir 
casting method (liquid metallurgy technique) to 
produce Al-Mg-Si-Cr alloy. The Aluminum 3005 
alloys having 92.4, 91.9, 91.4, 90.9, 90.4, and 
89.9 percent by weight, based on the charge 
calculations, were at first heated to 300 

o
C for 45 

minutes to aid the alloy’s wettability. The 
magnesium and chromium powder were 
preheated to 900

o
C and silicon particles were 

also preheated to 1100
o
C to further aid the 

alloy’s wettability. Thereafter, the Al 3003 alloy 
particles were charged into a furnace at 780

o
C, 

and allowed to dispel heat until the alloy was in a 
semi-solid form at about 600

o
C. At the semi-solid 

stage of the Al 3003 alloy, preheated 
magnesium, silicon and chromium powder were 
introduced into the alloy, and manually stirred for 
5-7 minutes. 
 

2.2 Heat Treatment 
 

The cast products of Al-Mg-Si and Al-Mg-Si-Cr 
alloys were made to undergo heat treatment. The 
heat treatment was carried in an electric furnace. 
All the samples were solution heat treated in an 
electric furnace at 500

o
C for 30 minutes and 

were water quenched after which they were 
aged. T6 condition was applied to products that 
are solution heat-treated and then aged 
artificially. All the samples were aged artificially 
at 210

o
C for 3 hours and then quenched in 

natural air. 
 

2.3 Electrochemical Test 
 

A computer-controlled potentiostat, NOVA 2.1 
was used for the electrochemical study. The 
analysis was performed using NOVA 2.1 
electrochemical software and a three-electrode 
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corrosion cell set up containing a counter 
electrode (CE), reference electrode (RE) and 
alloys as the working electrode (WE). The 
samples for the polarization test (WE) were cut 
out into 10 mm x10 mm and mounted on epoxy 
resin. The exposed surfaces of the samples were 
prepared by polishing them with emery cloths 
with increasing grit size from 60–1200. 
Afterwards, the CE, RE and the WE were 
connected, and thereafter inserted in an 
electrolyte (3.5 wt.% NaCl).  Exposed surfaces 
area of 100 mm

2
 was ensured for the samples in 

the electrolyte. Time was allowed for the samples 
to reach open circuit potential (OCP) in the test 
medium and was noted. Polarization was 
measured at a scan rate of 1mV/s at a potential 
initiated at −250 mV to +250 mV. The Tafel 
curves were plotted; the anodic and cathodic 
polarization curves of the Tafel were further 
extrapolated to obtain the values of corrosion 
current densities (jcorr) and corrosion potentials. 
The corresponding corrosion rates (CR) for the 
alloys were then determined using Equation 1 
[38]. 
 

            
                    

 
           (1) 

 

Where: jcorr (A/cm
2
) is the corrosion current 

density, EW (g) is the equivalent weight of the 
metal and ρ (g/cm

3
) is the density of the metal. 

 

2.4 Mechanical Tests 
 
2.4.1 Brinell’s hardness 
 
Brinell’s hardness test was used to determine the 
hardness of the metal surfaces. The hardness 
test was carried out following ASTM A29/A29M-
15.  For this test, the specimens of Al-Mg-Si and 
Al-Mg-Si-Cr alloys were cut to cylindrical shapes 
of length 30mm and diameter 8mm. The 
specimens were polished to remove the possible 
presence of defects. The specimens were then 
placed under a standard steel ball (indenter) of 
diameter 10 mm and the mercury gauge was set  

to zero as the reference point on the tester. The 
force of 225 kgf as indicated on the mercury 
gauge was applied on the specimens for about 
15 seconds. The indentation diameters on the 
specimens were measured after the load and ball 
were removed. The Brinell hardness numbers of 
the samples were then calculated using Equation 
2 [39].  
 

          
  

               
                           

 
Where D and d are the diameter of indentations 
and diameter of the steel ball, respectively, while 
F is the applied force. 
 
2.4.2 Tensile strength 
 
Tensometer was used to carry out the tensile 
strength test. The specimens were machined, 
thereafter shaped into standard test piece size; 
cylindrical shape of length 30 mm and diameter 5 
mm with dog bone-shaped ends. The initial 
diameter (d0) and length (L0) of the specimen 
were observed before the start of the test. One 
end of the specimen was fastened to the frame 
of the machine using grips, while the other end 
was similarly fixed to the movable crosshead. A 
steadily increasing load was applied to the 
specimen by pulling the hand wheel of the 
machine in a clockwise direction. The magnitude 
of the load was measured by the pointer on the 
load measuring unit. The yield point was 
measured on the pointer when the mercury 
stopped moving in the forward direction for a 
short while. On the further increase of the load, 
the pointer got to the ultimate load and at that 
point, the pointer moved in the reverse direction 
and stopped at a point to cause a fracture of the 
specimen. Thereafter, the fractured specimens 
were arranged together and the final length (Lf) 
and diameter (df) of each specimen were 
measured. Then, the computation of average 
tensile strength values was done following ASTM 
E8 standard.  

 
Table 1. Chemical composition of the experimental alloys 

 

Sample Percentage of 
Al 3003 (%) 

Weight of 
Mg (g) 

Weight 
of Si (g) 

Percentage 
of Cr (%) 

Weight 
of Cr (g) 

Al-Mg-Si-0%Cr 92.4 3.25 37.88 0 0 
Al-Mg-Si-0.5%Cr 91.9 3.26 38.08 0.5 2.72 
Al-Mg-Si-1.0%Cr 91.4 3.28 38.29 1.0 5.47 
Al-Mg-Si-1.5%Cr 90.9 3.30 38.5 1.5 8.25 
Al-Mg-Si-2.0%Cr 90.4 3.32 38.72 2.0 11.06 
Al-Mg-Si-2.5%Cr 89.9 3.34 38.93 2.5 13.9 
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2.4.3 Impact strength  
 
Impact strength (IS) is the ability of materials to 
absorb shock energy before the occurrence of 
deformation or fracture. The IS of the various 
alloy samples was examined via pendulum-type 
IS testing machine following ASTM D256. Each 
specimen was cut to the diameter of 10 mm and 
a length of 120 mm. This was followed by the 
notching of a 2 mm groove on the specimens for 
effective fitting into the machine. The specimens 
were mounted on the machine, allowing the 
pendulum to fall from a fixed point of a known 
height to deform or fracture the specimen. The 
impact strength is then indicated by the pointer 
on the scale after the occurrence of fracture. 
 

2.5 Microstructural Examination 
 
The specimens were grinded, polished and 
etched. Silicon carbide papers of different grades 
(220, 320, 400 and 600) were positioned on the 
grinding machine. A selvt cloth (polishing cloth) 
was swamped with 1.0 micron of silicon carbide 
solution. Ultimate polishing was carried out by 
swamping the polishing cloth with silicon carbide 
of 0.5 microns until a mirror-like surface was 
achieved. The mirror-like surface was etched in 
2% sodium hydroxide solution for 45 seconds. 
The samples were thereafter subjected to 
microstructural examination using an optical 
microscope (OPM) and scanning electron 
microscope (SEM) at the magnification of 400× 
and 250×, respectively. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Electrochemical Properties 
 
The polarization curves (Tafel curves) and 
polarization data for Al-Mg-Si and Al-Mg-Si-Cr 
alloy samples in 3.5 wt.% NaCl medium are 
shown in Fig. 1 and Table 2, respectively. 
Compared to other samples, the Al-Mg-Si alloy 
sample containing 0% Cr particles exhibited the 
highest corrosion rate and peak corrosion current 
density (jcorr) of 47.4840 mm/year and 4.10 E-03 
A/cm

2
, respectively. These values indicated that 

the corrosive medium ingresses the anodic and 
cathodic sites of the alloy to a greater extent 
compared to other samples. Also, the lowest 
polarization resistance (Rp) exhibited by the 
sample suggests that the medium was more 
active in the presence of Al-Mg-Si-%Cr alloy 
sample compared to each of the Al-Mg-Si-Cr 
alloy samples, leading to a high corrosion rate. 
Generally, all the Al-Mg-Si-Cr alloy samples 
exhibited significantly low corrosion rate and 
corrosion current density in 3.5% NaCl medium 
compared to Al-Mg-Si-%Cr alloy sample, 
indicating that the chromium particles inclusion 
into the matrix of Al-Mg-Si alloy was able to fill 
some micro holes, thereby minimizing the 
penetration of corrosive products and ions from 
3.5% NaCl medium. The low values of the 
corrosion current densities also implied that the 
particles of Cr minimized the exchange of current 
between the anodic and cathodic sites of the 
alloys [40,41].  
 

 
 

Fig. 1. Tafel curves for Al-Mg-Si and Al-Mg-Si-Cr alloy samples in 3.5% NaCl medium 
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It is also worth mentioning that Al-Mg-Si-1.0%Cr 
alloy sample possessed the lowest CR of 0.0014 
mm/year, lowest jcorr of 1.19E-07 A/cm

2
 and 

highest Rp of 9568.20 Ω. These values are good 
indications that minimal reaction occurs between 
the active sites of the alloy, perhaps due to the 
optimal inclusion of chromium. Fig. 1 also 
revealed that Cr particles tend to have a 
predominantly mixed corrosion protection effect 
on the alloy samples in 3.5% NaCl medium [42, 
43]. This implied that Cr particles somewhat had 
a balanced corrosion protection effect on the 
anodic and the cathodic sites of these alloys. 
However, with the Al-Mg-Si-1.0%Cr alloy sample 
(1.0% Cr particles addition sample), the 
polarization curves shifted marginally towards the 
cathodic region of the control sample (Al-Mg-Si-
0%Cr alloy sample). This indicated that Cr 
particles had more cathodic corrosion protection 
effect on this sample in the test medium (44).  
 
Furthermore, the open circuit potential (OCP) 
graph, which is also referred to as the steady-
state potential graph is shown in Fig.  2.  
 

This revealed the stability of the alloys in the 
corrosive medium within the test period. The 
starting potentials for the alloy samples ranges 
approximately between -0.8 and -1.12 V. 
However, the end potentials fall approximately 
between -0.8 and -1.0 V due to the shift in 
potential by some of the samples. For instance, 
the Al-Mg-Si-0%Cr alloy sample started with the 
potential of about 1.02 V, shifted to the less 
negative potentials and become stable between 
the last 60 and 70 minutes. Similarly, the OCP of 
Al-Mg-Si-1.0%Cr alloy sample (1.0% Cr particles 
inclusion sample) was stable between the first 30 
minutes of the experiment, experienced change 
in potentials, but eventually, become relatively 
stable. Moreso, a similar trend was observed 
with the Al-Mg-Si-1.0%Cr alloy sample. Contrary 
to the other samples, the samples containing Al-
Mg-Si-2.0%Cr and Al-Mg-Si-2.5%Cr alloy 
samples exhibited stable potential throughout the 
experiment. In general, the behaviour of these 
alloys signified that stead-state potential was 
achieved during the period of the experiment 
[45,46]. 

Table 2.  Polarization data for Al-Mg-Si and Al-Mg-Si-Cr alloy samples in 3.5% NaCl medium 

 
Sample Ecorr (V) Jcorr (A/cm

2
) CR (mm/year) Rp (Ω) 

Al-Mg-Si-0%Cr -0.79583 4.10 E-03 47.4840 9.6567 
Al-Mg-Si-0.5%Cr -0.80571 3.06E-05 0.3551 144.43 
Al-Mg-Si-1.0%Cr -1.02530 1.19E-07 0.0014 9568.20 
Al-Mg-Si-1.5%Cr -0.84284 9.91E-05 1.1521 349.63 
Al-Mg-Si-2.0%Cr -0.80706 8.73E-05 1.0145 280.47 
Al-Mg-Si-2.5%Cr -0.85355 4.77E-06 0.0554 562.22 

 

 
 

Fig. 2. OCP for Al-Mg-Si and Al-Mg-Si-Cr alloy samples in 3.5% NaCl medium 
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3.2 Hardness Properties 
 
The effect of chromium inclusion and heat 
treatment on the Brinell’s hardness of Al-Mg-Si 
and Al-Mg-Si-Cr alloy samples is shown in Fig. 3. 
The Fig. 3 showed that Al-Mg-Si alloy sample 
with 0% Cr particles exhibited a reasonable 
increase in hardness after heat treatment. There 
was also an increment in the hardness value of 
Al-Mg-Si alloy sample on the inclusion of 0.5% 
Cr particles. More increment in hardness value 
was observed on the addition of 1.0% Cr 
particles. An upsurge in these hardness values 
occurs after heat treatment. For instance, for 
0.5% Cr particles addition, the hardness value 
increased from 56.02 Kgf/mm

2 
to 86.73 Kgf/mm

2 

while that of 1.0% Cr particles addition increased 
from 61.80 Kgf/mm

2
 to 89.62 Kgf/mm

2
. This 

could be attributed to the precipitation hardening 
effect of the heat treatment processes and the 
strengthening mechanism of chromium which 
can affect the hardness of the material [47-50]. A 
conclusion can therefore be drawn that heat 
treatment and increase in the percentage 
concentration of Cr particles resulted in the 
increase of hardness value of Al-Mg-Si-Cr alloy 
samples between 0% and 1.0% Cr particles 
inclusion. This behaviour justified the assertion 
that ageing heat treatment process promotes 
hardness due to the precipitates of alloying 
elements that hinder the movement of the 
dislocations [51,52]. Comparing the hardness 
values of all the alloy samples, the maximum 

hardness value of 126.54 Kgf/mm
2
, which 

reduced to 120.88 Kgf/mm
2
 after heat treatment, 

was recorded for 1.50% Cr particles inclusion. 
This reduction could be as a result of void 
coalesces within the test region of the heat-
treated sample [53-55]. Although, for 2.0% Cr 
particles inclusion, the hardness of the heat-
treated Al-Mg-Si-Cr alloy sample was found to be 
slightly higher than the un-heat treated. Although 
reverse was the case for the 2.5% Cr particles 
inclusion. Conclusively, among the test samples, 
heat-treated and un-heat treated Al-Mg-Si-Cr 
alloy sample with 1.5% Cr particles exhibited a 
superior hardness characteristic, and next to it is 
the 2.5% Cr particles inclusion sample. 
 

3.3 Impact Strength  
 
Fig. 4 shows the effect of chromium inclusion 
and heat treatment on the impact strength of Al-
Mg-Si and Al-Mg-Si-Cr alloy samples. It can be 
seen that the inclusion of 0.5% Cr particles to Al-
Mg-Si alloy increased the impact strength from 
9.52 J/mm

2
 to 14.28 J/mm

2
. However, there was 

a drastic reduction in impact strength to 6.12 
J/mm

2
 with 1.0 % Cr particles addition, which 

increased slightly to 6.39 J/mm
2
 with 1.5 % Cr 

addition. The maximum impact strength of 19.04 
J/mm

2
 was obtained with 2.0% Cr particles 

inclusion. The value of impact strength drastically 
reduced to 8.16 J/mm

2
 with the inclusion of 2.5% 

Cr particles. This indicated that Al-Mg-Si-Cr alloy 
sample with 2.0% Cr particles inclusion was able

 

 
 
Fig. 3. Effect of chromium and heat treatment on the Brinell’s hardness of Al-Mg-Si and Al-Mg-

Si-Cr alloy samples 
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to absorb more shock energy before deformation 
or fracture. This could be ascribed to the Cr 
aggregation and slight load transfer between the 
matrix and Cr particles [56]. Other authors have 
also attributed this to the improved load-carrying 
capacity and the increased deformability of the 
alloy [57,58]. It can also be observed in Fig. 4 
that the effect of heat-treatment is not consistent. 
For instance, heat treating Al-Mg-Si-Cr alloy 
samples with 0.5%, 2.0% and 2.5% Cr particles 
inclusion resulted in the reduction in their impact 
strength. However, this effect is not the same 
with 0%, 1.0% and 1.5% Cr particles inclusion, 
where increase in impact strength was observed 
after heat treatment. This indicated that these 
three materials can be heat treated for specific 
applications while others might just be used 
without being heat treated. 

 
3.4 Ultimate Tensile Strength (UTS) 
 
The ultimate tensile strength of heat-treated Al-
Mg-Si and Al-Mg-Si-Cr alloy samples is shown in 
Fig. 5. The addition of 0.5% Cr particles 
increased the UTS from 112.02 MPa to 136.54 
MPa. It further increased to 152 MPa with 1.0% 
Cr particles inclusion, which is the maximum 
UTS recorded among the test samples. This 

increment in the UTS values could be ascribed to 
the ability of Cr particles to reduce plastic 
deformation on the matrix of Al-Mg-Si alloy [59, 
60], and this indicated that this alloy sample 
offered the largest restrain to peripheral pulling, 
compared to other samples [61,62]. The reason 
for the large decrease in the UTS on the addition 
of 1.5% Cr particles to Al-Mg-Si alloy could be 
due to defects in the test region. However, 
significant increment in UTS was observed with 
2.0% Cr particles inclusion into the matrix of Al-
Mg-Si alloy. The 2.5% Cr particles inclusion in Al-
Mg-Si alloy produced a highly negative effect on 
the alloy. Comparing the 152 MPa (UTS of Al-
Mg-Si alloy sample with 1.0% Cr particles 
inclusion) to 67.3 MPa (UTS of Al-Mg-Si alloy 
sample with 2.5% Cr particles inclusion) revealed 
a decrement of about 125.85% in UTS value. 
Balasubramanian and Maheswaran [63], 
attributed such occurrence to the phenomenon 
that results in a possible reduction in the ductility 
of composite in micro level locality near the Cr 
particles and the likely presence of defects in the 
test region. This indicated that Al-Mg-Si alloy 
material with 2.5% Cr particles inclusion might 
not be able to withstand reasonable application 
load. Compared to other alloy samples, it could 
be more susceptible to brittle failure [64].

 

 
 

Fig. 4. Effect of chromium and heat treatment on the impact strength of Al-Mg-Si and Al-Mg-Si-
Cr alloy samples 
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Fig. 5. Effect of Cr and heat treatment on the ultimate tensile strength of Al-Mg-Si and Al-Mg-
Si-Cr alloy samples 

 

3.5 Microstructural Properties Study of 
Al-Mg-Si and Al-Mg-Si-Cr Alloy 
Samples  

 
Fig. 6 shows the OPM of Al-Mg-Si and Al-Mg-Si-
Cr alloy samples. In Fig. 6a, more coarse and 
irregular morphologies were observed in the 
matrix of Al-Mg-Si-1.0%Cr alloy sample. Series 
of needle-like inhomogeneous microstructures 
was also noticed. This could have been the 
reason for the high corrosion rate of the sample. 
The irregular and needle-like surface 
morphologies could have easily acted as pitting 
corrosion initiation sites [65,66]. On the other 
hand, Fig. 6b, which is the OPM of the un-heat 
treated Al-Mg-Si-1.0%Cr alloy sample, exhibited 
more improved morphologies, with minimal 
macro-segregation of particles. The homogenous 
microstructure could be ascribed to the inclusion 
of Cr particles, which fill the needle-like voids 
visible in the matrix of Al-Mg-Si alloy. The OPM 
of the heat-treated Al-Mg-Si-1.0%Cr alloy sample 
in Fig. 6c revealed complex multiphase structure. 
There is also an obvious formation of fine 
chromium precipitates in the matrix of the alloy, 
resulting in a fine dispersion of the chromium-rich 
phases. However, the addition of 1.5% Cr 
particles to the matrix of Al-Mg-Si alloy resulted 
in the agglomeration of particles and rougher 
morphologies, as shown in Fig. 6d. The 
agglomerated particles form clusters, indicating 

that the volume concentration of Cr particles 
could have oversaturated the matrix of Al-Mg-Si 
alloy [67,68]. Although, the agglomeration of the 
particles was found not too visible after heat 
treatment, as indicated in Fig. 6e. These clusters 
of chromium are likely to be responsible for the 
high hardness value of Al-Mg-Si-1.5%Cr alloy 
sample. 
 

A further study carried out on Al-Mg-Si and Al-
Mg-Si-Cr alloy samples using SEM is shown in 
Fig. 7. This was done to ascertain the effect of 
chromium on their microstructural properties. The 
presence of the reinforcing chromium powder 
particles was evident in the un-heat treated Al-
Mg-Si-1.0%Cr and heat-treated Al-Mg-Si-1.0%Cr 
samples as shown in Fig. 7b and 7c, 
respectively. These micrographs showed that the 
reinforcing Cr particles and the other constituents 
were relatively dispersed homogenously with low 
agglomeration in the matrix of the alloy. 
 

Comparing the SEM in Figs. 7b and 7c to that of 
Fig. 7a, it obvious that the addition of Cr particles 
to the matrix of Al-Mg-Si reduces the grain size 
of the matrix. For a nanocomposite material, the 
matrix grain size is dependent on the particles 
size and fraction. Therefore, it is observed that 
the Cr particles addition to the matrix of the alloy 
decreases the grain size, and this indicated that 
grain refinement occurred. The grain refinement 
or reduced grain size seen in Figs. 7b and 7c
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Fig. 6. OPM of (a) Unheat treated Al-Mg-Si-0%Cr (b) Unheat treated Al-Mg-Si-1.0%Cr (c) Heat  
treated Al-Mg-Si-1.0%Cr (d)  Unheat treated Al-Mg-Si-1.5%Cr (e) heat treated Al-Mg-Si-1.5%Cr 

alloy samples 
 
could be ascribed to the appropriate volume 
concentration of chromium in the grain boundary, 
which limits grain growth [69]. This is an 
attestation to the affirmation of the grain 
refinement ability of Cr particles reported by 
several authors [70-72]. Moreover, as it can be 
seen in Fig. 7a, Al-Mg-Si-0%Cr alloy sample 
exhibited different degrees of micro porosities, 
cleavages, void and numerous dimples. 
However, these defects were minimal in the un-
heat treated Al-Mg-Si-1.0%Cr alloy sample, and 
reduction in defect became more glaring after 

heat treatment. The reduced defect                  
characteristic displaced by this alloy could as 
well be traceable to the effect of chromium, 
which perhaps reduces the entrapment                         
of gases during casting [73-75]. It is also           
worthy of note that the active re-crystallization in 
Al-Mg-Si-0%Cr resulted in the formation of 
brand-new grains in the prior grain boundaries. 
However, the recrystallization level reduces with 
the inclusion of chromium, which acted                              
as a barrier to the grain boundary’s migration 
[74,76]. 
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Fig. 7. SEM of (a) Unheat treated Al-Mg-Si-0%Cr (b) Unheat treated Al-Mg-Si-1.0%Cr  (c) Heat 
treated Al-Mg-Si-1.0%Cr samples 

 

4. CONCLUSIONS 
 

The effects of the inclusion of chromium in Al-
Mg-Si alloy and subsequent heat treatment on 
the behavioural response of Al-Mg-Si-Cr were 
investigated. The corrosion, hardness, impact 
strength, tensile strength, and microstructural 
properties of un-heat treated and heat                  
treated Al-Mg-Si-Cr alloys were examined based 
on established procedures. The following 
conclusions were drawn from the experimental 
results: 
 

(a) Heat treated Al-Mg-Si-1.0%Cr alloy sample 
exhibited the highest tensile strength and 
lowest corrosion rate of 152 MPa and 0.0014 
mm/year, respectively. 

(b) The inclusion of Cr particles in Al-Mg-Si alloy 
sample increased hardness from 35.03 
Kgf/mm

2
 (hardness of Al-Mg-Si-0%Cr alloy 

sample) to a maximum value of 126.54 
Kgf/mm

2
 (hardness of Al-Mg-Si-1.5%Cr alloy 

sample). After heat treatment, the hardness 
of Al-Mg-Si-0%Cr alloy sample increased to 
80.84 Kgf/mm

2
, while that of Al-Mg-Si-

1.5%Cr alloy sample decreased slightly to 
120.88 Kgf/mm

2
. 

(c) Chromium particles inclusion in Al-Mg-Si 
alloy sample increased impact strength from 
9.52 J/mm

2
 (impact strength of Al-Mg-Si-

0%Cr alloy sample) to a maximum value of 
19.04 J/mm

2
 (impact strength of Al-Mg-Si-

2.0%Cr alloy sample). After heat treatment, 
the impact strength of Al-Mg-Si-0%Cr alloy 
sample increased slightly to 10.09 J/mm

2
, 

while that of Al-Mg-Si-2.0%Cr alloy sample 
decreased slightly to 17.57 J/mm

2
. 

(d) Inclusion of Cr particles in Al-Mg-Si alloy 
improved its surface morphology. Al-Mg-Si-
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1.0%Cr alloy sample was adjudged as the 
best alloy that possesses refined 
microstructural characteristics when 
compared to other Al-Mg-Si alloys with Cr 
content. Therefore, this sample is 
recommended as a potential material for 
machine tools and other structural 
applications.    
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