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ABSTRACT 
 

In order to study the relationship between inhibitory concentration and the molecular structures of 
hydroxamic acids, a Quantitative Structure Activity Relationship (QSAR) study is applied to a set of 
31 histone deacetylase inhibitors (HDACi). This study is performed by using the Principal 
Component Analysis (PCA) method, the Ascendant Hierarchical Classification (AHC), the Linear 
Multiple Regression Method (RML) and the nonlinear regression (RMNL). Multivariate statistical 
analysis allowed to obtain two quantitative models (RML model and RMNL model) by the means of 
the quantum descriptors those are the dipole moment (μ), the bond length d(C=O) and the valence 
angles α°(O=C-N) and α°(H-N-O). The RMNL model gives statistically significant results and shows 
a good predictability R2 = 0.967, S = 0.379 and F = 557.031. The valence angle α°(O=C-N) is the 
priority descriptor in the prediction of the inhibitory concentration of the studied hydroxamic acids. 
The obtained results show that geometric descriptors could be useful for predicting the inhibitory 
concentration of histone deacetylase inhibitors. 

Original Research Article 



 
 
 
 

Soro et al.; IRJPAC, 16(2): 1-13, 2018; Article no.IRJPAC.40895 
 
 

 
2 
 

Keywords: Histone Deacetylases; QSAR; hydroxamic acid; DFT method. 
 

1. INTRODUCTION 
 
Histone Deacetylases (HDACs) have been 
discovered as a class of enzymes that regulate 
the elimination of acetyl groups from lysine 
residues of histones. They play an important 
regulatory role in epigenetics [1]. HDACs have 
been identified as one of the main agents in 
tumorigenesis and the inhibition of HDAC 
function has been shown to be an effective 
strategy in the treatment of cancer [2]. The well-
known HDACs are eighteen (18) molecules and 
are grouped into four classes. They are 
ubiquitously expressed and are widely implicated 
in many chronic diseases such as cancer and 
inflammation [3]. Class I contains HDACs 1, 2, 3 
and 8. They have a high homology (likeness) 
with the RPD3 transcriptional regulator and are a 
subunit of multiprotein nuclear complexes. The 
members of Class I which are most physically 
similar to each other are HDAC1 and HDAC2 
because of HDAC1 shares nearly 85% sequence 
homology with HDAC2, followed by HDAC3 
which shares about 57% and HDAC8 (nearly 
38%). HDAC1 and 2 are associated in most 
corepressor complexes as heterodimers or 
homodimers [4]. Moreover HDAC1, 2 and 3 are 
highly expressed in renal cancer [5] and prostate 
one [6]. Class II, i.e. HDAC4, 5, 6, 7, 9, and 10 
are closely related to HDAC1. The different types 

of cancer due to HDAC1 are related to peripheral 
tissues [7]. In our study, the IC50 inhibitory activity 
on HDAC1 was used. Quantitative Structure 
Activity Relationship (QSAR) is one of the best 
methods used to design new therapeutic agents 
[8-10]. It permits to correlate quantitatively with a 
mathematical model the structure of the 
compounds with their biological activities. It is 
increasingly used to reduce the excessive 
number of experiments, sometimes long and 
expensive and of course the cost of drug’s 
production for pharmaceutical companies [11, 
12]. This QSAR approach has its origins in the 
studies carried out by Hansch [13] and by Free 
and Wilson [14]. In this work, the aim is to 
conduct a descriptive and predictive study of the 
anticancer activity of a series of thirty one (31) 
HDACi by implementing the methods of quantum 
chemistry in order to model the observed 
anticancer activities. The molecular descriptors 
have been calculated by using only the chemical 
structure of the compounds. Those                  
descriptors help us to predict the inhibitory 
concentration of similar molecules. In the specific 
case of the QSAR study, twenty (21) histone 
deacetylase inhibitors (HDACi) were used for the 
test set and ten (10) others from the same series 
were used for the test external validation (Fig. 1). 
These molecules were synthesized by Yao et al. 
[15]. 
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Fig. 1. Molecular structures of training and validation sets of histone deacetylase inhibitors 
used for QSAR models 

 

2. MATERIALS AND METHODS 
 

2.1 Data Sources 
 

In order to establish a descriptive and predictive 
theory of the anticancer activity of HDACs I, the 
methods of Theoretical Chemistry are used at 
the B3LYP/6-311G (d, p) level. Gradient-
corrected functionalities and hybrid functionals 
such as B3LYP give better energies and are in 
good agreement with high-level ab initio methods 
[16,17]. Gaussian 09 [18] was used in order to 
evaluate the quantitative structure-activity 
relationship between the inhibitory activity of 
HDACi and quantum descriptors. The split-
valence and triple-zeta bases (6-311G (d,p)) 
which is sufficiently extended and the fact of 
taking into account the polarization functions is 
important because it takes into account the pairs 
of electron of heteroatoms those are not 
engaged in a link. The modeling was done using 

the multilinear regression method implemented in 
Excel spreadsheets [19] and XLSTAT version 
2014 [20]. 
 

2.2 Molecular Descriptors 
 

Some physico-chemical descriptors have been 
used for the development of QSAR models. In 
particular, the descriptors related to the geometry 
that is to say the structure and the dipole 
moment (μD). These descriptors are all 
determined from the optimized molecules. The 
used geometric descriptors are the bond length d 
(C = O) in angstrom (Å) and the valence angles 
α°(O = C-N) and α°(H-N-O) in degrees (Fig. 2). It 
should be noted that these geometric descriptors 
were all measured on the common core of 
studied HDACi. Several studies have 
demonstrated that geometric descriptors provide 
better models as well as global reactivity 
descriptors [21,22,23]. The dipole moment (μD) 
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indicates the stability of a molecule in water, in 
particular an aqueous solution. Thus, with a 
strong dipole moment we will get low solubility in 
organic solvents and high solubility in water [24, 
25]. 
 

 
 

Fig. 2. Geometric descriptors of Class I 
Histone Deacetylase Inhibitors 

 

2.3 Statistical Analysis 
 
2.3.1 Data analysis 
 
The structures of 31 HDACi were studied by 
using both statistical methods based on Principal 
Component Analysis (PCA) [26,27] and the 
XLSTAT version 2014 software [20] to determine 
the descriptors that are straightly linked to the 
inhibitory activity. PCA is a useful statistical 
technique for summarizing all the information 
contained in the structure of the different 
compounds. It is also very important because it 
allows us both to understand the distribution of 
compounds and to select descriptors that are 
directly related to biological activity [28]. It is a 
method which is essentially descriptive. This 
method aims to present the maximum 
information of the physicochemical descriptors 
graphically. The Ascendant Hierarchical 
Classification (AHC) aims to partition a set of 
molecules into homogeneous classes [29]. It 
organizes molecules by grouping them 
hierarchically on a dendrogram according to a 
number of variables and modalities. It gathers 
them by aggregating those are most similar by 
using the measure of distance between 
molecules in order to form classes. This 
classification is made by taking into account the 
biological activity of molecules and calculated 
descriptors. AHC has established a typology of 
molecules as a function of the dipole moment 
(μD), the bond length d(C=O), and the α°(O=C-N) 
and α°(H-N-O) valence angles. 
 
2.3.2 Multiple Linear and Nonlinear 

Regressions (RML and RMNL) 
 
The Multiple Linear Regression (RML) statistical 
technique is used to study the relationship 
between a dependent variable (Biological 

activity) and several independent variables 
(descriptors). This statistical method minimizes 
the differences between the actual and predicted 
values. It also allowed to select the descriptors 
used as input parameters in multiple nonlinear 
regression (RMNL). RMNL analysis is a 
technique that improves the structure-activity 
relationship in order to evaluate quantitatively the 
biological activity. This technique is the well-
known tool for studying multidimensional data 
which takes into account several parameters. 
The background of this technique is a 
preprogram XLSTAT functions which is given 
below (1): 
 

� = � + (��� + ��� + ��� + ���) 
+(���� + ���� + ℎ��� + ����)                          (1) 

 
Where a, b, c, d... represent the parameters and 
x1, x2, x3, x4... represent the variables. 
 
The (RML) and the (RMNL) were generated 
using the XLSTAT software version 2014 [20] to 
predict the inhibitory activity IC50 HDAC1. The 
equations of the different models were specified 
by the coefficient of determination (R2), the mean 
squared error (S), the Fischer test (F) and the 
cross correlation coefficient (Q2

CV) [30,31]. 
 

2.4 Estimation of the Predictive Capacity 
of a QSAR Model 

 
Studied Histone deacetylase I inhibitors have 
various inhibitory concentrations ranging from 
0.033 to 9.58 μM. This range of concentrations 
makes it possible to define a quantitative 
relationship between the cancer activity and the 
theoretical descriptors of these molecules. The 
quality of a model is determined by based on 
various statistical analysis criteria including the 
coefficient of determination R

2
, the standard 

deviation S, the correlation coefficients of the 
cross validation Q2

CV and Fischer F. R2, S and F 
are related to the adjustment of calculated and 
experimental values. They describe the 
predictive ability within the limits of the model, 
and make it possible to estimate the accuracy of 
the calculated values on the test set [32,33]. The 
cross validation coefficient Q

2
CV gives information 

on the predictive power of the model. This 
predictive power is called "internal" because it is 
calculated from the structures used to build this 
model. The correlation coefficient R² gives an 
evaluation of the dispersion of the theoretical 
values around the experimental ones. The quality 
of the modeling is better when the dots are 
closed to the adjustment line [34]. The 
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adjustment of points to this line can be evaluated 
by the coefficient of determination (2). 
 

�� = 1 −
∑���,��� − ���,�����

�

∑���,��� − ���,����
�                            (2) 

 

��,���: The experimental value of inhibitory 

activity 
���,����: The theoretical value of the inhibitory 

activity  
���,��� : The average value of the experimental 

values of the inhibitory activity. 
 

More the value of R² will be closer to 1 more the 
theoretical and experimental values will be 
correlated. Moreover, the variance σ2 was 
determined by the following relation: 
 

�� = �� =
∑���,��� − ��,�����

�

� − � − 1
                          (3) 

 

k is the number of independent variables 
(descriptors), n the number of molecules in the 
test or learning set, and n-k-1 is the degree of 
freedom. The standard deviation S is another 
used statistical indicator which allows to evaluate 
the reliability and the precision of a model: 
 

� = �∑���,��� − ��,�����
�

� − � − 1
                                    (4) 

 
The Fisher test F is also used to measure the 
level of statistical significance of a model, in 
other words, the quality of the choice of the 
descriptors constituting the model. 
 

F =
∑���,���� − ��,����

�

∑���,��� − ��,�����
� ∗

� − � − 1

�
               (5) 

 
The coefficient of determination of the cross 
validation Q

2
CV permits to evaluate the accuracy 

of the prediction on the test set. It has been 
calculated by using the following relation: 
 

���
� = 

∑���,���� − ���,����
�

− ∑���,���� − ��,����
�

∑���,���� − ���,����
�        (6) 

 

2.5 Criterion for Acceptance of a QSAR 
Model 

 

According to Eriksson et al. [35,36], the 
performance of a mathematical model is 
characterized by a value of ���

�  . A model is said 
to be satisfactory when ���

� >  �.�  and to be 

excellent when ���
� >  �.�. According to them, a 

given test set will be qualified as efficient model if 
the acceptance criterion �� − ���

� <  �.� is 
respected. 
 
According to Tropsha et al. [37,38,39], 
concerning the external validation set, the 
predictive power of a model can be obtained 
from the five follow criteria. 
 

1)  �����
� > �.� ,   

2)  �������
� > �.� ,   

3)  ������
� − ��

��≤ �.� , 

4) 
�� ����

� � � �
��

� ����
� < �.� and �, ��≤ � ≤ �.��, 

 5) 
������

� � ���
��

�����
� < �.� and �.��≤ �� ≤ �.�� 

 

Otherwise, Roy and Roy [40] have further refined 
the predictive ability of a QSAR model. They 
have developed quantities such as  ��

�  ��� ∆��
� , 

called metric values. ��
�  determines the proximity 

between the observed activity and the predicted 
one. The metric values ��

�  ��� ∆��
�  are 

calculated from the observed and predicted 
activities. Currently, these two different 
parameters (variants) �� 

� ���  ∆��
�  can be 

calculated for the internal validation or for 
external validation. According to these authors a 
QSAR model is acceptable, when both criteria 
are met. 
 

��
���� =

(��
� + �′�

� )

2
> 0.5 

∆��
� = ���

� − �′�
� �< �.� 

With��
� = �� ∗ �� − ���� − ��

��� ���   �′�
� = �� ∗ �� − ���� − �′�

��� 

 

3. RESULTS AND DISCUSSION 
 

3.1 Descriptors and Experimental 
Inhibitory Activities 

 
All the descriptors values for the twenty one (21) 
molecules of class 1 of histone deacetylase 
inhibitors of the test set and the ten (10) other 
molecules of the validation set are given in Table 
1. 
 
3.2 Principal Component Analysis (PCA) 

and Ascendant Hierarchical 
Classification (AHC) 

 

All the four descriptors of the 31 inhibitors are 
submited to PCA. The two main axes are enough 
to describe the information provided by the data 
matrix. Indeed, the variance percentages are 
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55.57% and 22.93% for the F1 and F2 axes, 
respectively. The total information’s estimation is 
78.50%. (PCA) [29]. PCA was conducted to 
identify the relationship between the different 
descriptors. Bold values are different from 0 to a 
significance level of p = 0.05. The correlations 
between the four descriptors are presented in 

Table 2 as a correlation matrix and in Fig. 3 
where these descriptors are represented in a 
correlation circle. The Pearson correlation 
coefficients are summarized in Table 2. The 
resulting matrix provides information on the 
negative or positive correlation between the 
variables. 

 
Table 1. Quantum descriptors and Inhibition Concentrations (IC50) of training and validation 

sets 
 

 µD d(C=O)  α°(O=C-N)  α°(H-N-O) IC50 
Training set 

1 5.782 1.22611 119.550 111.081 0.131 
2 6.157 1.22554 119.335 110.828 1.160 
3 5.178 1.22598 119.371 110.942 0.32 
4 4.807 1.22594 119.367 110.938 0.313 
5 5.231 1.22611 119.344 110.957 1.310 
6 5.158 1.22606 119.360 110.961 0.323 
7 5.537 1.22590 119.369 110.930 0.218 
8 7.251 1.22573 119.385 110.904 0.242 
9 5.347 1.22616 119.335 110.947 0.376 
10 5.472 1.22592 119.378 110.943 0.293 
11 6.224 1.22614 119.321 110.943 0.067 
12 4.448 1.22595 119.342 110.906 0.145 
13 5.667 1.22606 119.329 110.922 0.719 
14 5.259 1.22610 119.354 110.971 0.342 
15 4.718 1.22591 119.385 110.926 0.116 
16 5.161 1.22605 119.349 110.952 0.043 
17 4.528 1.22595 119.343 110.886 0.539 
18 5.109 1.22606 119.343 110.916 0.646 
19 4.474 1.22603 119.353 110.958 0.233 
20 5.353 1.22599 119.353 110.989 2.660 
21 3.190 1.22583 118.935 110.771 9.58 

validation set 
22 6.777 1.22604 119.310 110.902 0.112 
23 5.192 1.22602 119.351 110.939 0.064 
24 3.823 1.22554 119.387 110.851 1.760 
25 6.000 1.22585 119.376 110.919 0.197 
26 6.222 1.22605 119.343 110.935 0.086 
27 5.777 1.22610 119.331 110.946 0.035 
28 5.151 1.22603 119.342 110.923 0.033 
29 3.831 1.22591 119.376 110.938 0.068 
30 5.265 1.22606 119.348 110.949 0.195 
31 4.592 1.22606 119.362 111.029 2.490 

μD in Debye (D), d (C = O) in angstrom (Å), α°(O = C-N) and α°(H-N-O) in degrees, IC50 (μM) 

 
Table 2. Correlation matrix (Pearson (n)) between the different descriptors 

 
Variables IC50 μD  d(C=O) α°(O=C-N) α°(H-N-O) 
IC50 1     
μD -0.4937 1    
d(C=O) -0.2513 0.1250 1   
α°(O=C-N) -0.8235 0.3729 0.1130 1  
α°(H-N-O) -0.4795 0.2225 0.6502 0.6939 1 

Bold values are different from 0 to a significant level for p <0.05.  
Very significant for p <0.01. Very significant for p <0.001. 
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Fig. 3. Circle of correlation 
 

  

Fig. 4. Dendrograms of class I histone deacetylase inhibitors 
 

The dipole moment, the valence angles (α°(O=C-
N) and α°(H-N-O)) are negatively correlated                  
with the IC50 (respectively with -0.4937,                  
-0.8235, -0.4795 and p <0.05) at a significant 
level. 
 

The correlation circle was made to detect the 
connection between the different descriptors. 
The analysis of the principal components from 
the correlation circle (Fig. 3) revealed that the F1 
axis (55.57% of the variance) seems to represent 
the valence angles α°(O=C-N) and α°(H-N-O), 
and the F2 axis (22.93% of the variance) seems 
to represent the bond d(C=O). 

The AHC in Fig. 4 illustrates the distribution of 
inhibitors in six (6) classes according to their 
affinity. The six (6) classes are: C1 (1; 3; 6; 7; 9; 
10; 11; 14; 16; 23; 25; 26; 27; 28; 30); C2 (2; 5; 
13), C3 (4; 12; 15; 17; 18; 19; 29), C4 (8; 22), C5 
(20; 24; 31) and C6 (21). 
 

3.3 Multiple Linear Regression (RML) 
 

The equation of the QSAR model with statistical 
data is presented below. Fig. 5 illustrates the 
correlation between the experimental and 
theoretical IC50 of the test set (blue dots) and the 
validation set (red dots). This obtained model 
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relates the inhibitory activities and the theoretical 
descriptors of histone deacetylase inhibitors. The 
negative or positive sign of the coefficient of a 
model’s descriptor reflects the effect of 
proportionality between the evolution of the 
biological activity and this parameter. The 
negative sign indicates that when the value of the 
descriptor increases, the biological activity 
decreases. The positive sign reflects the 
opposite effect. The obtained equation is shown 
below: 
 

����
����  = 9213 – 0.19339*µD - 7645*d(C=O) - 

28.98873*α°(O=C-N) + 32.64810*α°(H-N-O) 
N=21 �� = �.��� ���

� = �.���S= 0.599F= 
198.197 
 
The negative signs of the dipole moment (μ), the 
bond d(C=O) and valence angle α°(O=C-N) 

coefficients indicate that inhibitory activity will be 
improved for low values of these quoted 
descriptors. And the positive sign of α°(H-N-O) 
also indicates that the inhibitory activity will be 
improved for high values of this valence angle. 
The significance of a model is expressed by the 
Fischer coefficient F = 198.197: the correlation 
coefficient of the cross validation ���

� = 0.913. 

This model is acceptable with �� − ���
� =

�.��� − �.��� = �.��� < �.�. The regression 
line between experimental and theoretical 
inhibitory activity of the training set and validation 
set is shown in Fig. 5. 
 

The low value of the standard error S = 0.599 
attests the good similarity between the predicted 
and experimental values (Fig. 6). This curve 
reflects a similar evolution of these data by the 
multilinear model of the inhibitory activity. 

 

 
 

Fig. 5. The regression line of the RML model 
 

 
 

Fig. 6. Similarity curve of the experimental and predicted values of the RML model 
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Verification of Tropsha Criteria 
 

�����
� = 0.944 > 0.7 �������

� = 0.998 > 0.6

 ������
� − ��

��= �.���� ≤ �.� 

 
�� ����

� � � �
��

�����
� = �.���� < �.�  and .�� ≤ � =

�.���  ≤ �.�� ; 
 
������

� � ���
��

�����
� = �.���� < �.�  and �.�� ≤ �′ =

�.�� ≤ �.�� 
 

All values meet the Tropsha criteria, so the 
model is acceptable for predicting inhibitory 
activity. 
 

3.4 Nonlinear Multiple Regression 
(RMNL) 

 

The statistical nonlinear regression method was 
used to improve the predicted inhibitory                   
activity quantitatively. It has taken into account 
the four chosen descriptors (μD, d(C=O), 

α°(O=C-N), α°(H-N-O)). This method is the most 
common tool for studying multidimensional data. 
This statistical method is applied to the data in 
Table 1 containing 31 molecules associated with 
the four descriptors. The resulting equation is: 
 
����

����  = -1783E+4 + 1.29040*µD + 
3224E

+4
*d(C=O) + 5141*α°(O=C-N) - 

40320*α°(H-N-O) - 0.09718*µD
2 -1315E+4

*d(C=O)2 

– 21.64688*α°(O=C-N) 2 + 181.80443*α°(H-N-O)2 

 
N=21 �� = �.��� ���

� = �.���  
S= 0.379 F= 557.031 
 
The significance of the model is expressed by 
the Fischer coefficient F = 557.031 and the 
correlation coefficient of the cross validation 
���

� = 0.967. This model is acceptable with 

�� − ���
� = �.��� − �.��� = �.��� < �.� . The 

regression line between the experimental and 
theoretical anticancer activities of the training set 
(blue dots) and the test set (red dots) is shown in 
Fig. 7. 

 

 
 

Fig. 7. The regression line of the RMNL model 
 

 
 

Fig. 8. Similarity curve of the experimental and predicted values of the RMNL model 
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The very low value of the standard error, S = 
0.379 also certify the good similarity between the 
predicted and experimental values (Fig. 8). This 
curve reflects a very good analogical evolution of 
the experimental values predicted by the RMNL 
model of the inhibitory activity, despite some 
recorded discrepancies. 
 

Verification of Roy's Criteria 
 

��
����� =

(��
� + �′�

� )

�
= �.��� > 0.5;         ∆��

�

= |��
� − �′�

� | =  �.��� < 0.2 
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All values meet the Tropsha criteria, so the 
model is acceptable for predicting the inhibitory 
activity of hydroxamic acid compounds. 
 
Among the two models, the model obtained by 
the RMNL statistical method has a much better 
predictive capability than the RML approach. 
 
However, these models are based on four 
theoretical descriptors, it is useful to determine 

the contribution of each of them in predicting the 
inhibitory activity of the test compounds. Indeed, 
the knowledge of this contribution allows to 
establish the order of priority of the various 
descriptors. It also permit to define the choice of 
the parameters which must be optimized in order 
to get an improved activity. 
 

3.5 Analysis of the Contribution of 
Descriptors  

 

The contribution of the four descriptors of this 
model in the prediction of the inhibitory activity of 
hydroxamic acid compounds was determined 
from the XLSTAT software version 2014               
[20]. The different contributions are gathered in 
Fig. 9. 
 

The valence angle α°(O=C-N) displays a large 
proportion followed by the valence angle α°(H-N-
O) and the bond length d(C=O). And finally the 
dipole moment (μ) displays the smallest 
proportion. It should be noted that geometric 
descriptors globally bring a fairly important 
contribution in predicting the inhibitory activity of 
hydroxamic acid compounds.  

 

 

 
Fig. 9. Contribution of descriptors in models 
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4. CONCLUSION 
 
This study revealed quantitative relationships 
between the inhibitory activity (IC50) and the 
physicochemical descriptors of HDACi. From the 
chemical point of view, these obtained 
descriptors depend on mainly the geometric 
structure of the hydroxamic acids. The 
descriptors like the dipole moment (μD), the bond 
length d(C=O) and the α°(O=C-N) and α°(H-N-O) 
valence angles explain and predict the inhibitory 
concentration of HDACi. Statistical methods such 
as Principal Component Analysis (PCA), 
Ascendant Hierarchical Classification (AHC), 
Multilinear and Nonlinear Regression were used. 
The study of the robustness of the two built 
models (RML and RMNL) has a good stability 
and an excellent power of prediction. In addition, 
the RMNL model (R2 = 0.967, S = 0.379, F = 
557.031) is better than RML one and is an 
effective tool for predicting the inhibitory                 
activity of the best analogs of studied HDACi. 
Moreover, the study of the contribution of the 
descriptors showed that the valence angle 
α°(O=C-N) is the first descriptor in terms of 
priority in the prediction of the inhibitory 
concentration of studied hydroxamic acids. The 
negative sign of the coefficient of valence angle 
α°(O=C-N) in the equation of the RML model 
indicates that the low values of the valence angle 
α°(O=C-N) could improve the inhibitory 
concentration of HDACi. 
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