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Abstract
Pavement markings provide an important foundation as they help to keep roads users 
safe. Accurate and comprehensive information about pavement markings assists the road 
regulators and is useful in developing driverless technology. Mobile light detection and 
ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement 
markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional 
(3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in 
a fast and efficient way. The RGB attribute information of data points can be obtained based 
on the panoramic camera in the system. In this paper, we present a novel method process to 
automatically extract pavement markings using multiple attribute information of the laser 
scanning point cloud from the mobile LiDAR data. This method process utilizes a differential 
grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to 
identify and extract pavement markings. We utilized point cloud density to remove the noise 
and used morphological operations to eliminate the errors. In the application, we tested our 
method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The 
results indicated that both correctness ( p ) and completeness (r) were higher than 90%. The 
method process of this research can be applied to extract pavement markings from huge point 
cloud data produced by mobile LiDAR.

Keywords: laser pulse reflection intensity, mobile LiDAR, automatic extraction, RGB, 
point density
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1. Introduction

Road information is one of the most important parts of basic 
geographic information, and accurate and high-precision road 
information plays an important role in urban planning, traffic 
control, and emergency response [1–4]. At present, the main 
record of spatial vector road data is two-dimensional (2D) 
information; however, it has been unable to meet the needs 
of three-dimensional (3D) navigation and intelligent city 
modeling [5]. A laser scanning or light detection and ranging 
(LiDAR) system is one of the most important technologies 
to capture spatial data in a fast, efficient and highly effective 
way. It has been widely used in many fields, such as digital 
city, basic surveying and mapping, urban planning, transporta-
tion, and environment protection. It can directly obtain the 3D 
coordinates of object for 3D object reconstruction and digital 
elevation model generation [6]. Mobile LiDAR systems have 
been actively studied and implemented in the past few years, 
for example the vehicle-borne laser measurement system [7], 
StreetMapper [8–11], LYNX [12, 13] and FGI Roamer [14, 
15]. However, when compared with developments in mobile 
LiDAR systems, automated algorithms from mobile LiDAR 
point clouds fall rather behind; this is due to the huge data 
volumes and the complexity of urban pavement markings. To 
extract pavement markings, mobile LiDAR point clouds need 
to be classified into different categories, which is a key step in 
the accurate identification of pavement markings.

A large amount of research has been recently published on 
vehicle-mounted or mobile laser scan data. These publications 
can be placed into two categories: (1) point cloud classifica-
tion [16–19] or (2) road information extraction [15, 16, 20]. 
However, few studies have been published on the extraction 
of pavement markings and algorithms cannot be applied to 
different fields well when extracting the pavement markings. 
Fang and Yang [21] classified three types of roads and built a 
digital road model with three indexes: height, point cloud den-
sity and slope. They extracted structural road information by 
analyzing the spatial distribution of point cloud and statistical 
characteristics of the laser scan lines. Boyko and Funkhouser 
[22] obtained a 2D connection diagram by approximating the 
road map network, and gradually producing a digital map of 
roads with established routes; they extracted road information 
on a large scale. Hernández and Marcotegui [23] determined 
the road boundary by the elevation change and differences 
along the cross-section of the road studied. The hypothesis of 
this study is that the road surface should be on the same eleva-
tion and should be relatively even. However, owing to the dif-
ferent objectives of algorithm design and the low accuracy of 
the extraction results, all of the mentioned research extracted 
road information rather than pavement markings.

Kumar et al [24] described an automated way of applying 
a range of dependent thresholding functions to the intensity 
values to extract road markings. They use binary morpholog-
ical operations and generic knowledge of the dimensions of 
road markings to complete their shapes and remove other road 
surface elements introduced through the use of thresholding. 
Yang et al [25] conducted the extraction of road markings by 
filtering the point cloud using point cloud coordinate locations 

and distinguishing between target points and other points by 
laser pulse intensity of scanning. Kumar et  al [26–28] pro-
vided a combination of two modified versions of the para-
metric active contour or snake model in which the parameters 
are empirically selected and fixed for all of the road sections. 
After analyzing the relationship between intensity, distance, 
and angle, Huang et al [29] eliminated the errors and noise of 
the original data collected, and classified it into 16 levels using 
laser pulse reflection intensity. Different intensity levels corre-
spond to different targets of geographic features. However, the 
intensity of laser scanning is easily affected by the surround-
ings, such as the weather, the environment, the distance of the 
laser pulse origin, and so on, hence this absolute quantitative 
classification of laser pulse reflection intensity cannot be used 
for various applications of laser scanning data processing.

This paper is aimed at the problems mentioned above and 
proposes a process method of extracting city road pavement 
markings by collecting the attribute information of vehicle-
mounted point cloud laser scanning data, which can be widely 
applied. The method process utilizes X, Y, Z coordinate loca-
tions, RGB, laser pulse reflection intensity, and point cloud 
density to identify and extract pavement markings. It uses mul-
tiple methods of multi-level layered filtered extraction instead 
of using single attribute judgment to extract the pavement 
markings in order to enhance the extraction method of exten-
sive practicability. The process method utilizes car driving 
recorder data to change the X, Y, Z coordinates according to 
the direction of the vehicle. The coordinate system is then 
used to calculate the spatial characteristics of the local point 
cloud of a plurality of scanning lines. Given full play to the 
use of synchronous vehicle photos, in the color point cloud it 
will be converted into the data point attribute RGB gray level 
calculation to improve the accuracy and efficiency of point 
cloud target extraction. We put forward point cloud computing 
to help in vehicle target extraction of the point cloud based 
on the laser reflection intensity difference process compared 
with the previous algorithm. Making up for a little bit of cloud 
strength value unstable defects, an increase in the application 
range of cloud point extraction can simultaneously extract 
between the three-lane road lines to provide assistance in the 
development of unmanned technology.

2. Extraction of vehicle-borne laser colored point 
clouds

In this study, we applied the SSW Vehicle-Borne Mobile 
Model (figure 1); details can be found at www.jx4.com/en/. 
It was developed by Capital Normal University and Beijing 
Geo-Vision Technical Company and it includes a 360° laser 
scanner, IMU, GPS, and CCD camera. This system adopts a 
laser scanner with a long range, high accuracy, a large field of 
view (FOV), and an IMU with high accuracy. Compared with 
similar products, the advantages of this SSW model are its: 
short initial time span, easy operation procedure, high acc-
uracy, and automatic classification and modeling.

The SSW system was integrated through the mechanical 
structure. Time synchronization was ensured with GPS time 
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as the main line and the absolute coordinates of the measured 
target points were obtained through integrated navigation and 
a mutual structural relationship. Among them, time synchroni-
zation achieved a unified time system of the laser scanner, and 
IMU and camera through the GPS marking format, namely the 
GPS time system, so as to realize the data consistency of the 
system at every moment. The integrated navigation was real-
ized by using GPS and IMU to acquire the attitude and posi-
tion data of the system at every moment combined with the 
calculation. The system obtained the data by rotating the laser 
scanning beam in a clockwise direction around the rotating 
axis at a high speed, and gained the coordinates in the instan-
taneous scanning coordinate system through  post-processing. 
The laser scanning device, IMU, the GPS receivers, and the 
vehicle-borne platform were bound in a rigid way, and the 
position and attitude relationship among the laser scanning 
coordinate system, GPS, and IMU was obtained through pre-
cise stand-alone calibration and system calibration. In the end, 
the coordinates of the measured object could be converted 
to the geodetic coordinate system through the formula out-
lined below. The relevant attribute data could be identified by 
photos synchronously collected by the camera. The pixels of 
photos synchronously collected by the camera corresponded 
to the laser point clouds to generate the laser point clouds that 
included all kinds of attribute information.
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The equation  (1) can be expressed as a vector, 
PWGS−84 = RWRGRN (RMRL · r + tL − tG) + PAPC

WGS−84. In 
the formula, PWGS−84 =

(
x84 y84 z84

)T
 is the coordi-

nates of the laser footprint in the WGS-84 coordinate system; 

tG =
(
∆xG

I ∆yG
I ∆zG

I

)T
 refers to the offset between the 

antenna phase center and the inertial navigation platform refer-

ence center; tL =
(
∆xL

I ∆yL
I ∆zL

I

)T
 is the offset between 

the laser emission reference center and the inertial navigation 

platform reference center; PAPC
WGS−84 =

(
x84 y84 z84

)T
APC ;

r =
(
o o ρ

)T
 is the position vector of the laser foot-

print in the homoeopathic laser beam coordinate system;  

RW and RG are the coordinate transformation matrix and coor-
dinate rotation matrix related to the current position; RN  and 
RL are the rotation matrices related to the measured or interpo-
lated attitude angle and scanning angle; and RM  refers to the 
rotation matrix of the installation error.

Through the above formula and the relevant calibration 
parameters, the laser point cloud data were converted to the 
WGS-84 absolute coordinate system, and then the data were 
used based on practical needs.

3. Automatic extraction method process of road 
pavement markings

Since laser scan point cloud data has the characteristics of 
large volume, high uncertainty, and noise, it is necessary to 
conduct a pre-process prior to the computing process of fea-
ture extractions. Based on the vehicle laser scanning route, 
distances between points, and local point cluster representing 
the different planes of geographic features, the noise and 
errors can be filtered and eliminated. Both the volume of data 
and the computational time can be reduced by pre-processes.

The major scanning method of the vehicle-mounted laser 
scanning system is linear scanning. Different geographic fea-
tures or objects have different spatial distributions. Aiming at 
the automatic extraction of road pavement markings, we pro-
posed a novel method process for pavement marking extrac-
tions. First, scanning lines were extracted from dispersed 
laser reflection points according to their recorded GPS time or 
reflection angle (figure 2). Secondly, road surface information 

Figure 1. The structure of the SSW vehicle-borne laser modeling 
and surveying system.

Figure 2. Extraction process of road pavement markings.
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was extracted by changes in the vertical height and fluctua-
tion of point clouds on the road surface utilizing the spatial 
distribution characteristics of the laser points on the scanning 
lines. In essence, the extraction of the target point cluster is 
accomplished through a series of sequential selection filtering 
of point clouds by vertical elevation difference, RGB differ-
ence of adjacent points, changes of point density, laser pulse 
reflection intensity, and intensity differences. Finally, a den-
sity-based clustering of the extracted pavement marking point 
clouds was carried out. The density-based spatial clustering 
of applications with noise (DBSCAN) clustering method 
[30] was applied to cluster the boundary points on the whole 
road by setting the clustering search radius Rd and forming 
Mind, the minimum point of the clustering cluster. After the 
clustering was completed, the point cloud fitting calculation 
was performed for a single class and the vectorization of each 
pavement marking was realized based on the traffic direction. 
Point clusters of clear and accurate pavement markings can 
be obtained by eliminating noise as per the corresponding 
attribute information estimation.

3.1. Extraction of vehicle-mounted point cloud laser scanning 
lines

Points recorded by the vehicle-mounted scanning system are 
sequenced by their returning time. The difference of scan-
ning angles of successive lines of the points recorded in the 
system is of fixed value, which is usually the angle resolution 
of the laser scanner. When the FOV is the sky, no laser points 
are reflected, and an irregular jump is seen between the last 
scanning point (ptj) and the first one (ptj+1) in the following 
scanning line (ptj and ptj+1 are the two consecutive points 
recorded by the system), as is shown in figure 3. Accordingly, 
an irregular jump in the GPS time gap between ptj and ptj+1 
can be retrieved. Therefore, the time gap and angle differ-
ence between two adjacent lines of points can be calculated 

according to the formulas indicated below. In this case, the 
points in dispersion can be arranged into a series of 2D lines. 
Every 2D line or scanning line is an approximation of a cross-
section of the road [21]:

fabs
(
ptj+1 (θ1)− ptj (θ2)

)
> ∆θ

 (2)
or

ptj+1 (t − gps)− ptj (t − gps) > ∆t, (3)

where in these two equations  ptj+1 (θ1) and ptj (θ2) are the 
scanning angle values of the adjacent points; ptj+1 (t − gps) 
and ptj (t − gps) are their recorded GPS time, respectively; 
and ∆θ and ∆t  are the thresholds of the angle difference and 
time gap of the scanning line whose values are affected by the 
angle resolution and pulse frequency of the laser scanner.

3.2. Extraction of road features based on point cloud 
 elevation difference

Every single point among the laser scanning data has its own 
X, Y, Z coordinates. Based on these coordinates, we selected 
the measurement platform of the laser scanner as the hori-
zontal plane. Therefore, the Z direction could be considered 
perpendicular to the road surface. Since the height of the 
measured vehicle was also known, we could basically obtain 
the approximate location of the road surface relative to the 
measurement platform; so as to determine the threshold value 
selection in the Z direction (figure 4), we deleted all of the 
point clouds above the height of the road surface and gradu-
ally narrowed the selection range of the target point clouds 
Zpi < Zpe.

Results can be achieved through the method of filtering 
point cloud using the elevation difference of the Z value. In 
this research, the relative Zpe elevation difference between the 
center point and the surrounding points was utilized to extract 
leveled road features. Since the road surface is relatively flat, 
there will not be sudden changes in the vertical Z direction. 
Thus, it is believed that if there is a large change in the Z direc-
tion, then it means there is a road boundary (the curb), so as 

Figure 3. Mobile LiDAR scanning.

Figure 4. Z coordinate selection.

Meas. Sci. Technol. 28 (2017) 085203
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Figure 5. Gradually magnified original point clouds.

Figure 6. (a) 3  ×  3 square matrix point cloud; (b) 5  ×  5 square matrix point cloud; and (c) 7  ×  7 square matrix point cloud.

Meas. Sci. Technol. 28 (2017) 085203
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to initially exclude interference other than the point clouds on 
the road surface.

Point clouds are sequenced by the laser scanning route. 
A single scanning cross-section is similar to a straight line 
in 2D spaces, while multiple scanning lines can be grouped 
into a nearly rectangular array (figure 5). We used a nearly 
square array to interpret and filter point clouds in this 
research. Different sizes of nearly square arrays were experi-
mented with, such as square arrays of 3  ×  3, 5  ×  5, and 7  ×  7 
(figure 6). It was found through using multiple data files for 
testing that the 5  ×  5 point array is the most suitable filter 
for extracting road pavement. Subsequently, the filtering algo-
rithm follows the 5  ×  5 point array arrangement, and uses the 
Z coordinate of the point cluster generated for calculations, 
where the coordinates of the 5  ×  5 array is Zp0, Zp1, Zp2, 
Zp3...... Zp24, respectively, in this case. Z∑ represents the sum 
of the absolute value of the difference (∆Zi) between center 
point A 0 and each surrounding point. The value of Z∑ gener-
ally shows the difference of the distance between the current 
center point and the surrounding points in predicting the road 
plane. By limiting the maximum of the threshold value of Z∑, 
the road plane can be extracted (Z∑ < Zt):

Z∑ =

i∑
1

abs (∆Zpi − Z p0) (1 � i � 24). (4)

3.3. Extracting boundaries of different objects based on 
grayscale difference

Grayscale is the measurement of the darkness of an object. It 
utilizes absolute black as the standard to judge the different 
saturation showing on an image. The gray digital image, 
also known as black and white, is made up of pixels that 
contain only the intensity information, from the weakest, 
black, to the strongest, white [31]. In this research, RGB 
color images were collected simultaneously with laser scan-
ning. The color imagery element was assigned to each of 
the laser pulse points using fusion technology. The fusion 
process was created by matching the X, Y, Z coordinate loca-
tions. The original purpose is to add the real scene attribute 
to the digital models. The relative difference of the grayscale 
is basically stable if the laser scanning data and imagery data 
are collected simultaneously. We used the formula (gray  =  
R  ×  0.299  +  G  ×  0.587  +  B  ×  0.114) to convert RGB into 
gray scale to conduct the calculation [32, 33]. Thus, we used 
the grayscale difference to identify the boundaries of dif-
ferent objects.

The average area ratio can be used to structure the differ-
ence plot. We can confirm the changes according to the differ-
ence plot divided by the average area ratio [34]. The present 
study applied Otsu’s method to calculate the grayscale vari-
ation line of the point clouds on the surface of the road [35, 
36]. The Otsu algorithm divides the grayscale of an image 
into two groups with one specific assumed gray value t. When 
the between-class variance between the two groups reaches 
its maximum value, this gray value t is the optimal threshold 
value of image binarization.

Suppose the image has L gray values within the value range 
of 0 to L  −  1, in which the gray value T is chosen to divide 
the image into two groups, namely G0 and G1. The gray value 
of the pixel contained in G0 is within the range of 0–T and 
that contained in G1 is within the range of T  +  1–L  −  1. N 
represents the total number of the image pixels, and ni is the 
number of pixels whose gray value is i.

pi  =  ni/N  is the probability for each gray value i to appear; 
assume ω0 and ω1  are the proportions occupied by the number 
of the two groups of pixels, G0 and G1, in the overall image, 
and the average gray values of the two groups are µ0 and µ10, 
respectively, then we can gain:

Probability: ω0   =  
T∑

i=0
pi , ω1   =  

L−1∑
i=T+1

pi  =  1 − ω0 .

Average gray value: µ0  =  
T∑

i=0
ipi, µ1  =  

L−1∑
i=T+1

ipi.

The total average gray value of the image: µ = ω0µ0 + ω1 µ1.
Between-class variance: g(t)  =  ω0(µ0 − µ)

2 +_ω1(µ1 − µ)
2  = 

  ω0ω1(µ0 − µ1)
2.

The optimal threshold value: T  =  argmax(g(t)), which 
refers to the corresponding t value when the between-class 
variance reaches its maximum value.

To guarantee the accuracy and completeness of the target 
point clouds, a 5  ×  5 point cloud square matrix with the 
extraction point as the center was used as the target point 
cloud for subsequent calculations.

3.4. Extracting road pavement markings based on the laser 
pulse reflection intensity of point cloud and intensity change

Laser intensity is a special measurement value of the terres-
trial 3D laser scanner, but it has not been fully and effec-
tively applied in current research. Affected by factors such as 
system error, atmospheric conditions, and scanned geomet-
rical shape, the intensity value is likely to have large devia-
tions, and thus it is hard to truly reflect the target information 
[37]. However, if it is distinguished only by the reflection 
intensity of different substances under certain circumstances, 
a relatively good effect can still be achieved. As shown in 
figure 7, all of the laser points on a common street were ren-
dered according to their intensity values and the intensity 
region was 0–2048.

Under normal circumstances, for terrestrial 3D laser 
scanners, factors such as relatively close scanning distance 
and atmospheric attenuation can be negligible. Equation  (5) 
expresses the relationship between the laser intensity value I 
and the target reflectivity ρ; the laser distance measuring value 
R, the laser incident angle θ, and the transmitting power PE:

I = f (ρ, R, θ, PE). (5)

For the equipment used in the study, θ is completely consis-
tent. Assuming that the transmitting power PE is stable, equa-
tion (5) can be simplified as:

I = f (ρ, R). (6)

The general form for the laser radar to act on the distance 
equation is:

Meas. Sci. Technol. 28 (2017) 085203
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PE =
PEGE

4πR2 × σ

4πR2 × πD2

4
× ηAtm × ηSys. (7)

Herein, PR is the power of the receiving laser; PE is the power 
of the emission laser; GE is the transmitting antenna gain; σ 
is the target scattering section; D is the receiving aperture; 
R is the laser distance measuring value; ηAtm is the one-way 
atmospheric transmission coefficient; and ηSys is the optical 
system transmission coefficient of the laser radar. As for the 
expanded Lambert scattering targets, the LiDAR equation can 
be simplified as [38]:

PR =
πPEρcosθ

4R2 ηAtmηSys. (8)

In the equation, ρ  is the average reflection coefficient of the 
extended targets and θ is the laser incident angle. For close 
range terrestrial 3D laser scanners, the atmospheric transmis-
sion coefficient ηAtm can be neglected, namely:

I = cPR. (9)

If c is constant, then equation (6) can be further simplified as:

I = f (ρ, R, θ, PE) = C
PEρcosθ

R2 ηSys. (10)

In the present study, the incident angle θ is fixed and the emis-
sion power PE is stable, thus, equation  (10) can be further 
simplified as:

I = f (R, θ) = C′ ρ

R2 . (11)

In the equation, C′  =  ccosθπPEηSys/4. It is a coefficient 
related to the laser incident angle θ, the emission power PE, 
and the optical system transmission coefficient ηSys. Therefore, 
the intensity value of the laser point cloud is mainly affected 
by target reflectivity and distance.

Figure 7. (a) Original point cloud data and (b) colored point cloud data by reflection intensity.

Figure 8. Point cloud reflection strength value. Figure 9. Point cloud dynamic grid density and point cloud density 
filtering.

Meas. Sci. Technol. 28 (2017) 085203
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In order to efficiently and accurately utilize the intensity 
attribute of point clouds, a statistical data analysis of the laser 
intensity of currently available equipment was carried out. A 
section of the street was selected as the test area and the data 
points on the road surface were collected manually. As indi-
cated by the study, with a relatively high reflectivity, the pave-
ment markings can overcome the change of distance within a 
certain range and directly distinguish the intensity value. As 
shown in figure 8, within the distance range of seven meters, 
differences among the reflection strength values of the road 
surface paint are relatively larger compared with other parts of 
the road. However, since such differences are not so obvious 

beyond the distance range of seven meters, we made the judg-
ment based on the strength difference.

Figure 8 shows that if the point is closer to the laser 
scanner, its reflection intensity value is generally greater. The 
reflection strength of the road pavement marking is usually 
above 1750, while the reflection strength of ordinary road 
pavement rarely reached this level of intensity. Therefore, the 
target object or the road pavement marking in this research 
is relatively easier to be identified within a distance of seven 
meters. When the scanning distance is equal to or greater 
than seven meters, the reflection intensity difference is much 
smaller. Therefore, it is not possible to establish a numerical 

Figure 10. Colored point cloud data in Buffalo.

Figure 11. Original point cloud data in Beijing.

Figure 12. Original point cloud data in Beijing.

Meas. Sci. Technol. 28 (2017) 085203



Y Gao et al

9

threshold of reflection intensity in order to find the pave-
ment markings directly. In this research, we developed the 
differential intensity threshold method of adjacent points in 
order to judge the boundaries of road pavement markings. 

Ithreshold <

{
I∑ =

i∑
1

abs (Ipi − Ip0) (1 � i � 8)
}

. This 

method significantly improved the accuracy and precision of 
road pavement marking extraction.

The method of differential intensity is similar to the two 
filtering methods previously indicated in this research. We 
calculated the differential intensity of points in 3  ×  3 point 
clusters. I∑ is the sum of the absolute difference of intensi-
ties between the eight points and the central point. Based on 
our experiments so far, the outline of pavement markings can 
be clearly identified and extracted with the differential value 
ranges being greater than 30.

Figure 13. (a) Extraction results using adjacent point cloud gray level differential; (b) extraction results of point cloud intensity value and 
intensity difference; and (c) extraction results of dynamic grid point cloud density filtering.

Figure 14. Vectorized target point cloud: (a) and (b).
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3.5. Erasing the points of noise and error based on point 
cloud density

The clear outline of the point clusters of pavement markings 
can be identified after the steps outlined above. However, 
some sporadic points still exist, which might create problems 
for tasks, such as building digital solid models. Therefore, we 
use point cloud density to eliminate those points.

As shown in figure 9, with the vertical road surface direc-
tion as the plane, one point was selected as its center of the 
grid, utilizing the X Y coordinate direction to count the number 
of points in a square of 0.4 m on each side. Using a threshold 
number, we can judge whether the targeted central point is 

a sporadic point or not. If it is, the point would be removed. 
There is a very slight difference in Z values, which would not 
affect the results of this method. In the meantime, the number 
of points in this cluster is very small and we can quickly eval-
uate each of the points. After computing all of the points in the 
cluster, the accurate point cluster data of pavement markings 
will eventually be obtained.

3.6. Partial point cluster vectorization

Cluster and feature analyses of the discrete points extracted 
through the pavement markings need to be carried out to 

Figure 15. Results of the experiment: (a) original point cloud data; (b) point cluster of pavement markings; and (c) vectorized pavement 
markings.

Figure 16. Results of the experiment: (a) original point cloud data; (b) point cluster of pavement markings; and (c) vectorized pavement 
markings.
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eliminate fake target points. Meanwhile, a vectorization of the 
discrete points should be conducted to accurately express the 
pavement markings. The process is mainly divided into three 
steps: (1) conduct a density-based clustering of the target point 
clouds; (2) put forward and combine the clustering clusters 
based on the feature analysis; and (3) vectorize the clustering 
cluster of each pavement marking.

The DBSCAN clustering method [31] is used as the den-
sity clustering method. By setting the clustering search radius 
Rd and forming Mind, the minimum point of the clustering 
clusters, the method clusters all pavement markings on the 
road. A set of continuous points is obtained through density 
clustering with each cluster as the pavement marking of a sec-
tion of the road. Feature analysis can be used to determine the 
shape of the point set and the width of the pavement marking 
is 10 cm along the direction of the traffic. Thus, if the width 
of the clustered point set exceeds 10 cm, it will be determined 
as a fake point set and be eliminated. In the end, linear fitting 
of each point set gained is carried out to realize vectorization.

4. Experiment and analysis

4.1. Research data

This research used the data collected by the SSW Vehicle-
Borne Mobile Model system. The scanning range of data 
was roughly 2000 m  ×  300 m, with an approximate point 
number of 20 million. The data were extracted by scanning 
objects, such as roads, trees, buildings, and guardrails. The 
roads were in an urban area, and were relatively level and 
smooth with clear pavement markings. The data are shown in 
figures 10–12.

4.2. Results of the experiment

Figure 13 shows the results of the original point cloud after 
being extracted by our proposed algorithm. Then, the point 
cloud data were vectorized (figure 14). It is obvious that the 
extracting work of road pavement markings in this research 
yielded complete and accurate results. Figures 15 and 16 show 
the results of the other areas of the point cloud. This suggests 
that using the combined methods of differential point cloud 
elevation, differential grayscale, differential laser scan pulse 
reflection intensity, and point cloud density are effective in 
extracting road pavement markings. We can extract the target 

geographic feature clearly and achieve the expected accuracy 
and goals.

4.3. Result assessment

In order to assess the accuracy and precision of the extracted 
road pavement markings, evaluations on the results were car-
ried out according to the following models.

(1) Correctness: p  =  
√

X2+Y2√
X2+Y2+

√
∆X2+∆Y2

.

X is the target center X coordinate; 
Y is the target center Y coordinate; 
∆X  =  X1–X2; 
∆Y  =  Y1–Y2; 
X1 is the target center coordinate; 
X2 is the center coordinates of extraction results; 
Y1 is the target center coordinate; 
Y2 is the center coordinates of extraction results.

(2) Completeness: r  =  s1
s2

.

S1  =  (XMAX–XMIN)  ×  (YMAX–YMIN); 
XMAX is the maximum X coordinates after point 

cloud cluster; 
XMIN is the minimum X coordinates after point 

cloud cluster; 
YMAX is the maximum Y coordinates after point 

cloud cluster; 
YMIN is the minimum Y coordinates after point 

cloud cluster; 
S2 is the actual measurement area point cloud.

(3) Time: t(s).

Results of each of the three categories are shown in table 1.
The evaluation data indicates that two indexes (p, r) are 

above 90%. The average time for extracting each data set 
was 22.3 s. The assessment shows this method process of 
extracting pavement markings is accurate and precise and can 
be effectively used for large data set processing.

5. Conclusion

Using point cloud data of a vehicle-mounted laser scanning 
system, this research proposed a novel automatic extraction 
method process of road pavement markings, in particular for 
urban streets using some attribute information of the point 
cloud data, including location coordinates, grayscale of RGB, 
and laser pulse reflection intensity. First, this research pro-
posed to apply the combined methods of differential gray-
scale, differential reflection intensity, and point clouds density 
identification to extract the target objects. In comparison to 
the existing method of road pavement markings, the method 
process developed and applied in this research produces more 
accurate and more complete results of road pavement mark-
ings efficiently. Results of the trial evaluation indicate both 
the accuracy and the completeness of point cloud extraction 
of pavement markings are higher than 90%; therefore, this 

Table 1. Results of data extraction accuracy evaluation.

Test data Correctness ( p ) Completeness (r) Time (s)

Test data-1 97.24% 94.50% 22
Test data-1 98.77% 94.76% 22
Test data-2 96.45% 92.38% 24
Test data-2 96.89% 91.99% 24
Test data-3 98.77% 92.47% 21
Test data-3 98.59% 92.64% 21
Mean 97.79% 93.12% 22.3
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method process can be used for extracting pavement mark-
ings, streets, and roads from large LiDAR point cloud data. 
The algorithm proposed in this research lays the foundation 
of effective road feature extractions for 3D modeling. The 
methodology proposed by this research facilitates building 
and maintaining the ‘digital city’ or ‘smart city’ worldwide.
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