
++ Professor;
Director (T&P);
*Corresponding author: Email: omprakash@smslucknow.ac.in;

Cite as: Khan, R.A., and Om Prakash. 2024. “3D Virtual Modeling for Hajj and Umrah: Optimizing Traffic and Pilgrim
Management”. Asian Journal of Advances in Research 7 (1):435-43.
https://jasianresearch.com/index.php/AJOAIR/article/view/472.

Asian Journal of Advances in Research

Volume 7, Issue 1, Page 435-443, 2024; Article no.AJOAIR.3987

3D Virtual Modeling for Hajj and
Umrah: Optimizing Traffic and

Pilgrim Management

R.A. Khan a++ and Om Prakash b#*

a Babasaheb Bhimrao Ambedkar University, India.
b SRM University Lucknow, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://prh.mbimph.com/review-history/3987

Received: 28/06/2024
Accepted: 01/09/2024
Published: 06/09/2024

ABSTRACT

A 3D simulation model has been developed to enhance crowd management and safety during the
Hajj and Umrah pilgrimages. Utilizing an IoT-based framework and advanced micro-simulation
techniques, the model provides real-time predictions and diagnostics to manage pedestrian and
vehicular traffic effectively. The study compares the performance of GPU and CPU solutions,
demonstrating that GPU-based parallel processing significantly improves simulation efficiency. The
findings suggest that this approach could play a crucial role in preventing overcrowding and
ensuring the smooth flow of pilgrims, thereby reducing the risk of stampedes and other safety
hazard. Clearly the objective of this research is to create the best 3 model for crowd control and the
proposition has been made thereof.

Short Communication

https://prh.mbimph.com/review-history/3987

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

436

Keywords: NVIDIA; CUDA; Hajj; UMRAH; 3D Modelling.

1. INTRODUCTION

In recent years the creation and use of different
types of simulators has increased; either as a
means of prediction and understanding of natural
phenomena (Tsunami, earthquake or hurricane
simulators) or as training tools for system
operators (driving, flight, train simulators), where
the objective is clear; model the behaviour of a
complex system in the real world. In the similar
lines, a 3D model can also be prepared to
simulate the arrival, stay and departure of
pilgrims for the Hajj and Umrah. To achieve a
higher level of accuracy and complexity, some
simulators use a micro-simulation model that
allows them to operate at the level of the
individual. However, this requires a high level of
computational processing, which can only be
achieved with parallel processing [1].

The simulation model proposed in this document
seeks to create a tool that allows showing
possible scenarios to which the transport system
may be exposed. To achieve this, geographic
data from the work areas of the transport system
have been taken and a micro-simulation model
has been implemented that takes advantage of
the GPUs by performing parallel processing,
which allows micro-simulations to be carried out
at speeds greater than current CPUs. This paper
shows some alternative solutions that have been
developed in some simulators. In section 3 the
simulator rules are defined and several solution
alternatives are proposed, in section 4 the
performance of the various proposed solutions is
compared and in section 5 future work is shown.

2. RESEARCH METHODOLOGY

A 3D model based on an IoT based framework is
used which is not only smart but also efficient in
terms of crowd time management. Mohamed et
al. had proposed a similar system and we can
use and elaborate such a system. This approach
permits users to interact with mobile device and
there is an interface layer that utilizes the various
sensors and the data from these devices. The
data flows to the management layer. This
converts the data to information provides us with
the vital information about open roads and
passages. This then provide us with somewhat
non-crowded areas as it binds data to user
groups and friends. Expert system manages
crowd monitoring using this IoT-based
framework. A prototype was also proposed by

Nasser et al. which is designed to predict
possible problems by monitoring the paths
leading to the location of the rituals.

The proposed 3D model will also enhance the
proposed model by Islam et al., who presented
an IoT-based Crowd congestion and stampede
avoidance approach that uses a combination of
different sensors and machine learning-based
WEMOS D1 [2]. The prototype known as E-writs
belts was designed to collect data from pilgrims
in real-time and predict the possible risk of a
stampede. The proposed 3D model using the
sensors and connected devices will use the past
data, current movement of the pilgrims, the data
interchange amongst the users and the mandate
to stay connected to the devices will not only
count the current number of pilgrims just before
the Haj, but will use the past data and predictive
analytics to precisely predict the actual numbers.
The user interactions and profiles will help to
identify the people around the Haram and count
their number. IoT based model has been
successfully used in similar data collections as
proposed by Nasser et al.

The same model as proposed above will
estimate the flux, density and the count at a
given instant. The same model will also predict
the density of pilgrims at a given time at a given
place. Both predictive and prescriptive analytics
will be used to reveal the exact statistics and
recommend the best course of action so as to
avoid congestion and provide suitable
diagnostics to the organizers. The current and
acceleration of people in various directions will
be calculated [1].

2.1 Roadmap

The following roadmap is identified to detail the
schedule of events and milestones forecasting
and communicating the planned solution
deliverables over the time horizon. A visual tool
is also used to assist for developing and
communicating planned deliverable & milestone
with respect to time so as to highlight the type of
work currently being undertaken at the point in
time. The object of developing this roadmap is to
offer the team with an ability to develop, evolve
and adjust activity being planned. Besides, this
roadmap will also provide the stakeholders a
bird’s eye of the current activity being undertaken
and the overall long-term deliverables. Following
is the breakup of thar activities envisaged in the

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

437

complete development plan for the proposed and
offered solution:

1. Research and Literature review in the IoT
based model in 3Dimensions

2. Identify the Research Gap
3. Use Iot Based model to evolve a prototype

to achieve the objectives like virtual
representation of people who would
perform Hajj and Umrah. This will help to
predict the number of travellers arriving at
the holy places [3].

4. Develop the model that will also collect the
data from sensors to report the density of
people in real time at various holy places.

5. Past data and the current real time data
will help in producing the diagnostics that
will help the organizers to avoid any

possibility of stampede and identify some
alternate routes

6. A total of 6 months will be needed to
complete the prototype. A 3 months’ time
will be needed for testing the model and
other 3 months to deploy the model and
commissioning.

The above tasks are proposed to be completed
in a year’s time. The Planning Horizon is
represented below (total 1 year time needed for
deployment):

The above Fig. 1 represents the various steps
broadly onvovled in this research.

The Table 1 presents the project plan to
complete the modeling work.

Fig. 1. Planning Horizon: Total 1 year time needed for deployment of the solution

Table 1. The flowgraph of the development and deployment is also represented below

Activity 1 month 2 months 3 months 4 months 5 months 6 months

1. Reserach and
Literature Review in
the IoT based Model
in 3Dimensions

2. Identify the Research
Gap

3. Use IoT based model
to evolve a prototype
to achieve the
objectives like virtual
representation of
people who would
perform Hajj and
Umrah. This will help
to predict the number
of travellers arriving
at the holy places.

4. Develop the model
that will also collect
the data from
sensors to report the

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

438

Activity 1 month 2 months 3 months 4 months 5 months 6 months

density of people in
real time of various
holy places.

5. Past data and current
real time data will
help in producing the
diagnostics that will
help the organizersto
avoid any possibility
of stampede and
identify some
alternate routes

Flowgraph depicting the development and deployment of the proposed 3D model

3. RESEARCH AND LITERATURE
REVIEW

Simulation models are computer models that
operate at the level of individual behavior, such
as people, families, or firms. Such models
simulate large representative populations of
these entities in order to draw conclusions that
can be applied to higher levels of aggregation; an
example may be the average speed of a vehicle
in a city. This type of model is different from
aggregate models whose explanatory variables
already represent the collective properties. In the
corpus of current literature some models of
simulators were presented [4].

Address fields can be drawn by users or
extracted from a video sequence; the system
represents these fields in free spaces of the
simulation environment. Because agent
trajectories are implicitly encoded in these fields,
it is necessary that they meet the following
conditions [4].

● Agents must create paths of least effort to
reach the goals.

● Fields must be able to pass around static
objects in the environment.

Researchers have also, for the representation of
the direction and navigation fields, used the free
space of the environment. It is discretized,
through a grid, where each cell has a stored
direction vector, a free or busy state and handles
a connection of 4 neighbours [5].

Another similar solution is presented where there
is a micro simulation model based on a discrete
simulation space. Here space is subdivided into
small regions, and each region has defined
mobility parameters. This space allows to
represent structural pathologies such as the state
of the road network. Movable entities

(pedestrians and vehicles) can occupy one or
more regions of the space, the definition of their
displacement is defined by the average of the
mobility parameters of the regions they occupy
[4].

3.1 3D Model Based on CUDA
Architecture

CUDA (Compute Unified Device Architecture) is
the parallel computing architecture developed by
Nvidia that tries to exploit the advantages of
GPUs over general-purpose CPUs by using the
parallelism offered by its multiple cores and
allowing the launch of a high number of
simultaneous threads [6]. CUDA programming,
serial operations are still handled by the CPU
(main processor), while parallelizable 'Kernels'
are handed over to the GPU for processing. It is
important to understand the CUDA architecture
and memory design. Each Kernel is assigned a
Grid; each Grid contains a series of Blocks; and
each Block contains a set of threads. It is
possible to have a maximum of 8 active blocks
per stream multiprocessor or a maximum of 24
active warps (a warp is a set of threads that are
physically executed in parallel) per stream
multiprocessor. With 32 threads per warp, we
have a maximum of 768 active threads per
multiprocessor stream. On a card like the
GTX285 we would have 23,040 active threads
[7].

3.2 Implementation

The Implementation plan needs to complete the
five activities from undertaking the Literature
Review to completing and deploying the 3D
Model The details of the implementation are as
follows:

The Literature Review and related activities were
already descried in the previous section. In this

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

439

section, firstly the next activity, which is IoT
based 3D model is presented, along with the
necessary details.

The 3D simulation model is based on the Cellular
Automata model. A cellular automaton is a
discrete model containing a collection of cells
within an n-dimensional grid of known size, the
cells "evolve" through a number of discrete time
steps according to a set of state-based rules.
neighbouring cells and the state of the cell itself.
The model has 3 types of entities: Pilgrims (or
pedestrians), Vehicle and Holy Places [7].

The rules that entities must follow are:

● Entities try to reach a global goal (a
destination), through one or more local
goals (like Holy Places).

● No entity can occupy a cell that is being
occupied by another entity.

● “Pedestrian” type entities can pass through
any cell except those that represent
buildings or red traffic lights for
pedestrians.

● “Vehicle” type entities can only pass
through vehicular roads, and also can only
move in the direction that the road allows
(see section 3.3). Likewise, these entities
must stop at red traffic lights for vehicles.

● “Holy Places” type entities must are at their
Holy destinations according to a defined
time. The local goals of these entities
represent a arrival/departure route, and
their approach stations that their route
covers [8].

3.3 Texture Map

The developed model requires that the
geographic space be discretized in a grid of fixed
size. This is done through a texture file, where a
pixel would represent a cell, and the colour of
each pixel represents the state of the cell itself in
the 3-Dimensional space. For the creation of the
texture file, the geographic information of the
simulation area is taken (the Holy places) and
encoded in a texture map. The codification of the
texture map has been done taking advantage of
the RGB space with which the colour of each
pixel of the image is represented.

• Layer R (red): the information on the type
of cell (building, pedestrian street,
vehicular street) and entities that occupy
the cell (Holy Places, vehicle or Pilgrims)
are encoded.

• Layer G (green): the mobility parameters of
the zone are encoded (directions in which
the entity can move)

• Layer B (blue): traffic signals (traffic lights)
are encoded.

One pixel in the texture represents an area of
approximately 1 meter square. In addition to the
texture map, a series of local and global goals
are defined, which due to their complexity are not
encoded in the texture map. Each local goal has
its own identifier and identifiers of the closest
local goals in the north, south, east and west
directions, therefore an entity that is in a local
goal can take 1 of the 4 available routes to reach
the next local goal. A global goal is the initial
(source) or final (sink) destination of an entity. An
entity must pass through different local goals to
reach a global goal. The path an entity takes to
reach its global goal is calculated before runtime
[7].

3.4 Consistency Management: In CUDA

The active threads are executed in parallel, this
leads to advantages in terms of processing time
but also leads to disadvantages in terms of
consistency, since one of the rules defined in
section 3 (rule 2) specifies that 2 features cannot
occupy the same cell. An example of movement
interaction between 2 pedestrians, it can be seen
that 2 pedestrians try to occupy a cell that is not
being occupied by another entity at an instant of
time, if both pedestrians proceed to occupy the
cell in question, there will be a conflict because 2
pedestrians are occupying the same cell.
Because of this, it is necessary to develop a
conflict detection and correction stage, which is
executed every time an entity moves (each
simulation step). In below section two
alternatives are shown to detect and correct
these conflicts [6].

3.5 Development of the 3D Model

In this current sub-section, the the development
of the model that will also help in collection of the
data along with the usage of sensors is
presented:

In this part, the development of the simulation
step has been proposed, two in GPU and one in
CPU, which are explained below [8].

Simulation Step with Serial Conflict Detection
and Resolution (GPU).

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

440

This solution executes the simulation step of
each type of entity (Pedestrian, Vehicle and Holy
Places) in 6 phases [8].

i. speed control phase,
ii. passage phase to the next cell,
iii. serial conflict detection phase,
iv. problem resolution phase,
v. conflicts in parallel, a second phase of

detection of conflicts in a serial way and
vi. phase of resolution of conflicts in serial.

With this solution, it is expected that a
large

Part of the conflicts will be resolved in the first 4
stages and that the final stage, which resolves
the conflicts serially, will be executed for a very
low number of entities.

Phase 1. Speed control (Parallel): To vary the
movement speed of the entities, the concept of
segments has been created. An entity belongs to
only a single segment but a segment can have
many entities. Only one segment can be
executed in a simulation step, the more speed a
segment has, the more often its simulation step
is executed, in this way the speed of movement
of the entities is controlled. For the creation of
segments, a numerical identifier is assigned to
each entity, and by numerical order a segment is
assigned.

The number of segments created depends on
the velocity assigned to the entities, the lower the
velocity of the entities the more segments are
generated, the higher the velocity the fewer
segments are generated. If you work at
maximum speed, a single segment is created
that is executed in all the simulation steps.

Phase 2. Passage to the next cell (Parallel): In
phase 2, the movement to adjacent free cells is
carried out in parallel for those segments that
must carry out their simulation step; however, as
shown in section 3.2, this can lead to conflicts. In
this phase, the following simplified code is
executed, which is executed in parallel for all
entities in the active segment [6].

for (each entity in the active segment)
{ findNextCellBreak();}
occupyNextCell();

Phase 3. Conflict detection (Serial):
Conflicting entities are detected as a result of
phase 2.
for (each entity in the active segment){ }

for (all other entities in the active segment){ }
if(there are other entities occupying the same
space that I occupy)
checkInConflict();

Phase 4. Conflict resolution (Parallel): In this
phase, conflicts between the entities are resolved
in parallel. This phase makes the entities
evaluate a new position for their displacement;
Of course, when carrying out this phase in
parallel, the entities can enter into new conflicts
(different from the initial conflict) [9].

for (each entity in the active segment and
marked with conflict){ }
if(among the conflicting entities, this one has
the lowest id)
deletePreviousPosition(); // this implies that
this entity takes precedence and takes
ownership of the conflicting cell
else // for all other entities
findNextCellBreak();
occupyNextCell();

Phase 5. Conflict detection (Serial): Conflicting
entities are detected, as a result of phase 3 (the
implementation is exactly the same as that
carried out in phase 2).

Phase 6. Conflict resolution (Serial): Conflicts
between the entities detected in phase 5 are
resolved serially, this phase causes the entities
to re-evaluate a new position to carry out their
displacement, however, as this phase is carried
out in a serial, conflicts between entities are not
presented again (the implementation is exactly
the same as the one made in phase 4, with the
difference that it is processed serially). This
solution effectively corrects the conflicts caused
by the execution of steps in parallel, however it
has many stages executed serially, so the virtues
of CUDA are not used correctly. Due to this, a
second alternative solution was proposed by
GPU.

Simulation step with parallel conflict detection
and resolution (GPU)

This solution executes the simulation step of
each type of entity (Pedestrian, Vehicle and
Transmilenio) in 4 phases: speed control phase,
passage phase to the next cell with conflict
detection, conflict resolution phase in parallel
with detection of new conflicts and final conflict
resolution phase. Phase 1 has the same
algorithm as the one explained in section 3.4.1,
for this reason its explanation will be omitted.

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

441

Phase 2. Passage to the next cell with conflict
detection (Parallel): In this phase, the same
procedure is carried out as in phase 2 of section
3.4.1, with the only difference that, in addition to
the texture map, it is used a map of entities,
where the identification number of the entity is
written in the cell that you want to occupy [9].

 For (each entity in the active segment)

{ findNextCellBreak();
occupyNextCell();
writeToMapOfIDs();}

In writeToMapOfIDs(), the entity identifier is
written to a map similar to the texture map. The
idea of using an additional map is to allow
detection of conflicts in parallel, in Fig. 1 you can
see the procedure, in (a) you can see how the
behavior with the texture map would be; two
entities with IDs 8 and 20 try to occupy the same
free cell, and conflict, in (b) these two entities try
to write their identifier in the same cell of the
entity map, however as the execution is in
parallel, one entity will necessarily overwrite the
data of the other entity, leaving (c) a single
identifier in the cell.

Now to detect conflicts, each entity must review
the identifier that has remained in the cells of the
entity map. If the identifier written in the cell does
not correspond to your identifier, it means that
you have had a conflict with another entity;
Otherwise, one of two things could happen: it did
not conflict with another entity, or it did conflict
but has priority when taking the cell, and the
other entities are the ones that will have to
recalculate their positions [10].

Phase 3. Conflict resolution (Parallel): In this
phase, conflicts between entities are resolved in
parallel, similar to phase 4, with the difference
that the entity map is used to detect conflicts and
writing in the map of entities the new positions
taken [11].

for (each entity in the active segment){
if(cell in entity map has the same id as the
entity)
deletePreviousPosition(); // this implies that
this entity has no conflicts or has precedence
and can take ownership of the cell
else // for all other entities
findNextCellBreak(); occupyNextCell();
writeToMapOfIDs()

Phase 4. Final conflict resolution (Parallel): In
this phase, conflicts between entities are
resolved in parallel, since this phase is carried

out in parallel, any new movement can generate
conflicts, for this reason no new movements are
generated, entities that do not have priority
(whose id is not in the entity map cell) are
returned to their previous position which is
consistent and without conflicts since their
position had not been released yet and the
entities with priority finish taking ownership of the
new cell by deleting its previous position [10].

for (each entity in the active segment)
if(cell in entity map has the same id as the
entity)
deletePreviousPosition(); // this implies that
this entity has no conflicts or has precedence
and can take ownership of the cell
else // for all other entities
returnPreviousPosition();}

It is important to note that in this solution
alternative there are no serially processed
phases, so the CUDA architecture is better used.

3D Simulation step without conflict detection and
resolution (CPU)

Due to the fact that the CPU processing is
carried out completely serially, in this version
there are no conflicts between entities, so the
simulation step is carried out in only 2 phases:
speed control phase and phase of passing to the
next cell. The implementation of these phases is
the same as that shown in previous section with
the difference that their processing is done
serially

4. RESULTS THE SOLUTION

Alternatives presented showed different results in
the time taken to perform a simulation step,
these results are shown below.

The time required to carry out a simulation step
for the pedestrian type entity.

It can be seen that the solution with parallel
conflict detection requires less time to carry out a
simulation step when the number of entities is
high. and that the time remains relatively
constant (initial of 2.41ms and final of 2.8ms).
Performing linear regression, it is obtained that
the time increment per entity is approximately
0.0560useg/entity and 0.6542useg/entity for the
parallel and serial conflict detection solutions,
respectively. This means that parallel clash
detection increases simulation time less as the
number of entities increases [10].

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

442

To compare the performance of GPU processing against CPU processing, the times of the solution
with parallel conflict detection for GPU have been taken and compared with the processing times on
CPU.

5. DISCUSSION ON RESULTS

The graph of the GPU (green line) and CPU (blue line) processing time, along with some lower limits
that cannot be exceeded. To understand these limits, it must be taken into account that the texture
map is displayed using OpenGL (purple line) and that if no changes are made to the texture, OpenGL
takes around 1.61ms redrawing the texture on the screen, therefore this is a lower limit that cannot be
exceeded by either the GPU version or the CPU version. Likewise, for the other limit, a kernel has
been made to update the texture map by GPU (red line), where each pixel of the texture map is
updated by a GPU thread and this has a set of minimum instructions, this update takes around
2.13ms so the GPU version cannot go faster than this value [10].

Graphical Presentation of Results

Fig. 2. The results are presented in the graphical form below

The simulation step time for the GPU
version is lower than the CPU version and
as the number of pedestrians increases the
simulation step time increases more for the
CPU version than for the version on GPU.
When performing linear regression, it is
found that the time increment is approximately
0.0560useg/entity and 0.1228useg/entity
for the GPU and CPU version respectively; this
makes the GPU version more suitable for a
larger number of entities. Therefore, the GPU
solution with parallel conflict detection and
correction is the most efficient of the solutions
shown.

6. CONCLUSIONS

It may now be concluded that the implementation
of the simulator based on CUDA has shown
good processing times, especially when
detecting conflicts in a parallel and non-serial
manner. The GPU version is significantly faster
than the CPU version, even though the CPU
version is done with only one phase for the
simulation step and not with 4 phases like the
GPU version. Although the simulator does not
have a large number of traffic parameters, it is a
good approximation that can be expanded to
satisfy other types of functional requirements.

Khan and Prakash; Asian J. Adv. Res., vol. 7, no. 1, pp. 435-443, 2024; Article no.AJOAIR.3987

443

Finally, the solution provided by GPU having the
capability of parallel conflict detection and
resolution is clearly the most efficient solution
proposed.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that generative AI
technologies such as Large Language Models,
etc have been used during writing or editing of
manuscripts. This explanation will include the
name, version, model, and source of the
generative AI technology and as well as all input
prompts provided to the generative AI technology
Details of the AI usage are given below:

1. Mapping for the model generation in three
dimensions with respect to the pilgrimage
site

2. Offering the candidate solution
3. choosing the best solution

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Mohamed MF, Shabayek AER, El-Gayyar
M. IoT-Based Framework for Crowd
Management. Cham, Switzerland:
Springer. 2019;4761.

2. Jabbari A. Tracking and Analysis of
Pilgrims' Movement Throughout Umrah
and Hajj Applying Artificial Intelligence and
Machine Learning. In 2023 7th
International Conference on Computing,
Communication, Control and Automation
(ICCUBEA). 2023;1-6.

3. Binsawad M, Albahar MM. A technology
survey on IoT applications serving Umrah
and Hajj. Applied Computational

Intelligence and Soft Computing. 2022;(1):
1919152.

4. Islam S, Ka A, Islam MZ, Islam N, Ullah
MN. IoT based crowd congestion and
stampede avoidance in Hajj using
wemos d1 with machine
learning approach, in Proc. 4th Int. Conf.
Electr. Inf. Commun. Technol. (EICT);
2019.

5. Felemban EA, Rehman FU, Biabani SAA,
Ahmad A, Naseer A, Majid ARMA, Zanjir
F. Digital revolution for Hajj crowd
management: A technology survey. IEEE;
2020.
Access, 8, 208583-208609.

6. Jason Sanders, Edward Kandrot CUDA by
Example - An Introduction to General-
Purpose GPU Programming, Ed. Addison-
Wesley; 2010.

7. Sachine Patil, Jur van den Berg, Sean
Curtis, Ming Lin, Dinesh Manocha,
Directing Crowd Simulations Using
Navigation Fields. IEEE Transactions on
Visualization and Computer Graphics;
2010.

8. Sergio Arturo Ordonez. microphone
platform Scalable and Multimodal
Simulation to Evaluate Urban Mobility in
Unconventional Scenarios. Colombia;
2010.

9. David B. Kirk, Wen-mei W. Hwu.
Programming Massively Parallel
Processors, A Hands-on Approach, Ed.
Morgan Kaufman; 2010.

10. German A, Florez. display development
realistic for urban environment on Nvidia
Scenix. University of the Andes Library,
Colombia; 2010.

11. Shambour MK, Gutub A. Progress of IoT
research technologies and applications
serving Hajj and Umrah. Arabian Journal
for Science and Engineering. 2022;1-21.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://prh.mbimph.com/review-history/3987

https://prh.mbimph.com/review-history/3987

