

Advances in Research

14(3): 1-12, 2018; Article no.AIR.38839 ISSN: 2348-0394, NLM ID: 101666096

Influence of Integrated Nutrient Management on **Nutrient Uptake by Cotton and Soybean in Intercropping System**

Amit M. Pujar^{1*}, V. V. Angadi² and J. A. Hosmath³

¹Department of Agronomy, University of Agricultural Sciences (UAS), Dharwad, Karnataka, 580005,

²AICRP on IFS – OFR Scheme, MARS, University of Agricultural Sciences (UAS), Dharwad, Karnataka, 580005, India.

³Agricultural College, University of Agricultural Sciences (UAS), Dharwad, Karnataka, 580005, India.

Authors' contributions

This work was carried out in collaboration between all authors. Author AMP designed the study. performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors VVA and JAH managed the analyses of the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AIR/2018/38839

(1) Slawomir Borek, Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska, Poland. (2) Paola Deligios, Department of Agriculture, University of Sassari, Italy.

(1) Vijendra Kumar Mishra, School of Biotechnology, Banaras Hindu University, India. (2) Arindam Sarkar, Bidhan Chandra Krishi Viswavidyalaya, India.

(3) M. Pandimadevi, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/24096

Original Research Article

Received 6th January 2018 Accepted 28th March 2018 Published 11th April 2018

ABSTRACT

A field experiment was conducted to study the influence of integrated nutrient management practices on nutrient uptake by cotton and soybean intercropping system in 1:2 row proportion during (summer crops) Kharif 2015 and 2016 at All India Coordinated Research Project on Soybean, Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India. The field experiment was laid out in a randomised complete block design with three replications and twenty treatments. Treatment comprised of organic and inorganic sources of nutrients used in different combinations. Soybean introduced as intercrop in cotton with 40 x 10 cm spacing for soybean and 120 x 60 cm for cotton. Results revealed that amongst 20 different types of plants and some types which initially uptake the nitrogen, phosphorus, and potassium that were significantly higher in it (150% RDF for cotton and soybean) and show same respond likewise of other prototypes (125% RDF for cotton and soybean). It could be concluded that application of 125: 62.5: 62.5 kg N, P_2O and K_2O ha⁻¹ in cotton and soybean intercropping system or 100:50:50 kg N, P_2O_5 , K_2O ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean intercropping was found to be optimum for efficient mineralization of nutrients for higher nutrient uptake by the crop .

Keywords: Kharif or summer; mineralization; agriculture; non-competitive intercrop; crop diversification.

1. INTRODUCTION

Cotton is the most important fiber crop in the world and the lint is used to make processed cotton, which is woven into fabrics, either alone or combined with other fibers. Recently, inputresponsive varieties and high-tech production technologies will go a long way to meet the increasing demand for the natural fiber. The increase in productivity alone could not benefit the cotton. Cotton is a long duration, wide spaced, slow growing at an early stage offers a great scope for intercropping with short duration, fast growing, non-competitive intercrops with dissimilar growth habit and productive that utilize the available resources very efficiently and effectively. Intercropping enables crop diversification within agro eco-region and ensures a better return to the growers. Intercropping of cotton with soybean is more for production sustainability than yield advantage under rainfed condition [1]. As per the package of the practice of UAS (University of agricultural sciences, Dharwad), cotton and soybean intercropping (1:2 rows) are recommended with a spacing of cotton 120 cm × 60 cm and soybean in 40 cm rows [2]. Although the use of chemical fertilizers is the fastest way of counteracting the pace of nutrient depletion, its increasing costs and limited availability deter the farmers from using these inputs in balanced proportions and in recommended quantities. The ability to take advantage of the natural resources is a major step toward economic prosperity for a country like India, as usage of chemical fertilizers for crop production is expensive, mainly because of the shortfall in availability and problems of pollution environmental [3]. Agronomic management practices viz., an intercropping and judicious combination of organic and inorganic manures is considered ecologically viable, economically feasible and avoids environmental pollution. In addition, a combination of organic and inorganic manures works like slow-release fertilizers for providing balanced nutrients to

plants consequently improve uptake of nutrients [4]. Considering this fact the present investigation was undertaken.

2. MATERIALS AND METHODS

Two years field experiment was carried out at plot 101 'D' block All India Coordinated Research Project on soybean, Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka (India) during Kharif or summer 2015-16 and 2016-17. The geographical co-ordinates of Dharwad are 15°26' N latitude and 75°07' E longitude with an altitude of 678 m above mean sea level. Dharwad comes under Northern Transition Zone (Zone-8) of Karnataka (India) which lies between the Western Hilly Zone (Zone-9) and Northern Dry Zone (Zone-3). The soil was medium black cotton belonging to vertisols. The soil pH was neutral, organic carbon, available nitrogen; phosphorus and potassium in soil were optimum for crop growth. The details on soil physical and chemical properties of soil were furnished in Table 1. The rainfall received during the crop growing period from July to December was 308 mm during 2015 and June to December was 462 mm during 2016. The field experiment was laid out in a randomised complete block design with three replications and twenty treatments as given in the tables (Tables 2-7). Sowing was done by adopting 120 cm x 60 cm row spacing for cotton (Neeraja Bt) and 40 cm x 10 cm for soybean (DSb 21) in the intercropping system (1:2) during Summer season on 09.07.2015 and 12.06.2016. According to the treatments, the organic manure (FYM) and green leaf manures (gliricidia and Pongamia) were applied 15 days before sowing of the crop. Vermicompost was spot applied to soil before dibbling of seeds. The recommended dose of fertilizer (RDF) was applied to both crops in an intercropping system according to population (100:50:50 and 40:80:25 kg N, P₂O₅ and K₂O₅ ha⁻¹ for Cotton and Soybean, respectively). Cotton occupied 100% population

Table 1. Physical and chemical properties of the soil experimental site (0-30 cm depth)

Particulars	Value	Methods employed
Physical properties		
Particle size distribution		
Coarse sand (%)	6.25	
Fine sand (%)	14.32	
Silt (%)	27.14	International pipette method [5]
Clay (%)	52.47	
Textural class	Clay	
Chemical properties		
Organic carbon (%)	0.51	Walkey and Black method 6]
pH (1:2.5, Soil: Water)	7.30	Potentiometric method using pHmeter [6]
Electrical conductivity (dS m ⁻¹) at 25°C	0.35	Conductivity using EC bridge [6]
Available N (kg ha ⁻¹)	281	Alkaline permanganate method [7]
Available P ₂ O ₅ (kg ha ⁻¹)	34	Olsen's method [6]
Available K ₂ O (kg ha ⁻¹)	312	Flame photometry method [6]

and soybean introduced with 67% population due to the area of crops covered in the intercropping system (1:2). Based on the nutrient content of plants and dry matter production, uptake of nitrogen, phosphorus, and potassium were worked out by using following formula.

Nutrient uptake (kg ha⁻¹) = (Per cent nutrient concentration/100) × Biomass (kg ha⁻¹)

Statistical analysis was carried out based on mean values obtained using MSTAT-C statistical package. The level of significance used in 'F' and 'T' test was P = 0.05. The treatment means were compared by Duncan's Multiple Range Test (DMRT) at .05 level of probability in which means followed by the same letters do not differ significantly (P = 0.05) [8].

3. RESULTS AND DISCUSSION

3.1 Nutrient Uptake by Cotton

Nitrogen uptake differed significantly due to integrated nutrient management (INM) treatments during both the years and in pooled data (Tables 2 and 3). Among the different treatments at 50 per cent flowering, T₃ (150% RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125% RDF for cotton and soybean) compared to rest of the intercropping systems during both years and in pooled data. At harvest, T₃ (150% RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125% RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17. The release of organic acids and CO₂ in the process of decomposition occurs, which resulted in the conversion of unavailable P into available form and release K into soil solution [9]. In addition to this population and diversity of beneficial microorganisms will be enhanced in the soil. Due to rapid growth, nitrogen fixation, greater biomass accumulation, nutrient conservation in their green tissue and mineralization of the nutrients allowing an increase in the nutrient uptake by crops. During decomposition process, organic acids like citric acid butyric acid acetic acid etc are produced as intermediate products and these acids make unavailable form of P2O5 to available form of P2O5. Therefore, organic and green manures helped in proper mineralization of nutrients in the soil consequently increased the uptake of nutrients. In another study by [9] reported that application of organic manures resulted in an increase in available N, P2O5, and K₂O of soil.

Phosphorus uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 4 and 5). Among the different treatments at 50 per cent flowering, T_3 (150% RDF for cotton and soybean) recorded the highest phosphorus uptake and it was on par with T_2 (125% RDF for cotton and soybean), T_4 (100% FYM and RDF for cotton and soybean) and T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) during both years and in pooled data. At harvest, T_3 recorded significantly

higher phosphorus uptake and it was on par with T₂ (125% RDF for cotton and soybean) during both years and in pooled data and also with T_{17} and T_{18} (T_1 + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17. Due to a balanced supply of nutrients to the crops viz., FYM, vermicompost and green leaf manure undergo decomposition which results in series of nutrient transformation in soil. Slow release of nutrients during crop growth period ensures higher availability to the long duration crop like cotton.

Potassium uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 6 and 7). Among the different treatments, T₃ (150% RDF for cotton and soybean) recorded higher potassium uptake and it was on par with T₂ (125% RDF for cotton and soybean) compared to rest of the intercropping systems and sole cotton at 50 per cent flowering and at harvest during both years and in pooled data. The results suggested that addition of organics not only increased the availability of these nutrients in the soil, but also favored the release of nutrients from organic through mineralization microorganisms and uptake by the crop. Higher uptake of nitrogen, phosphorus, and potassium by cotton is due to higher yield in T₃ and T₂. The results are in agreement with the findings of [10] who observed that recycling ensures the return of a major portion of nutrients recovered by the crop back to mother earth.

3.2 Nutrient Uptake by Soybean

Nitrogen uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 2 and 3). Among the different treatments at 50 per cent flowering, T₃ (150% RDF for cotton and sovbean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125% RDF for cotton and soybean) compared to rest of the intercropping systems during both years and in pooled data. At harvest, T₃ (150% RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T_2 (125% RDF for cotton and soybean) during 2015-16 and in pooled data and also with T₁₆ (T₁ + Gliricidia 2.5 t ha⁻¹ + Pongamia 2.5 t ha⁻ 1), T₁₇ (T₁ + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17. Results are in agreement with the findings of [11] who also reported that integrated application of vermicompost + gliricidia equivalent to RDF recorded higher available N, P_2O_{5} , and K_2O over RDF + FYM (5 t ha⁻¹).

Phosphorus uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 4 and 5). Among the different treatments, T_3 (150% RDF for cotton and soybean) recorded significantly higher phosphorus uptake and it was on par with T_2 (125% RDF for cotton and soybean) compared to rest of the intercropping systems and sole soybean at 50 per cent flowering and at harvest during both years and in pooled data, except at 50 per cent flowering during 2015-16 and also with T_{16} (T_1 + Gliricidia 2.5 t ha⁻¹ + Pongamia 2.5 t ha⁻¹), T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) in 2016-17 at harvest

Potassium uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 6 and 7). Among the different treatments, T₃ (150% RDF for cotton and soybean) recorded significantly higher potassium uptake and it was on par with T₂ (125% RDF for cotton and soybean) compared to rest of the intercropping systems and sole soybean at 50 per cent flowering and at harvest during both years and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha^{-1} + Gliricidia 2.5 t ha^{-1}) and T_{18} (T_1 + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) in 2016-17 at harvest. Similarly, [12] observed higher organic matter in soil due to the application of FYM and vermicompost after the harvest of the wheat crop, which was attributed to the addition of more biomass.

3.3 Total Uptake by Cotton + Soybean

Nitrogen uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 2 and 3). Among the different treatments at 50 per cent flowering, T_3 (150% RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T_2 (125% RDF for cotton and soybean) compared to rest of the intercropping systems during both years and in pooled data. At harvest, T_3 (150% RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T_2 (125% RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + Vermicompost

Table 2. Nitrogen uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

Treatments	Nitrogen uptake (kg ha ⁻¹)										
	-	Cotton			Soybear		Cotton + soybean				
	2015-16	2016-17	Pooled	2015-16		Pooled	2015-16	2016-17	Pooled		
T ₁ : 100% RDF for cotton and soybean	43.2g	47.7h	45.5h	75.1i	83.0m	79.1k	118h	130l	124k		
T ₂ : 125% RDF for cotton and soybean	57.0ab	62.4a	59.7a	97.4a	106a	101a	154a	168a	161a		
T ₃ : 150% RDF for cotton and soybean	59.2a	64.1a	61.6a	98.3a	108a	103a	157a	172a	164a		
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	53.9bc	58.3b	56.1b	93.1b	102b	97.6b	147b	160b	153b		
T_5 : T_1 + FYM 2.5 t ha ⁻¹	48.2d-f	52.4fg	50.3d-g	80.5gh	88.1h-k	84.3g-i	128f	140h-j	134i		
T_6 : $T_1 + FYM 5 t ha^{-1}$	48.4d-f	53.2d-g	50.8c-g	80.6gh	89.3h-j	84.9gh	129f	142g-i	135hi		
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	47.3ef	51.5g	49.4fg	79.2h	87.2i-l	83.2h-j	126fg	138ij	132ij		
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	47.3ef	52.7e-g	50.0e-g	79.3h	87.4h-l	83.3h-j	126fg	140ĥ-j	133i		
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	45.2fg	50.4gh	47.8gh	77.2hi	84.1lm	80.6jk	122gh	134kl [*]	128jk		
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	47.5ef	51.2g	49.3g	78.2hi	86.3j-m	82.2h-k	125fg	137jk	131ij		
T_{11} : T_1 + Vermicompost 1.25 t ha ⁻¹	48.2d-f	53.2d-g	50.7c-g	80.1gh	90.5g-i	85.3gh	128f	143gh	136hi		
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	51.1cd	55.1c-f	53.1b-e	83.1fg	91.3f-h	87.2fg	134e	146fg	140gh		
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	51.2cd	55.8b-e	53.5b-d	87.1de	96.1de	91.6de	138c-e	151de	145d-f		
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	50.2c-e	55.2c-f	52.7b-f	86.0ef	94.4d-f	90.2ef	136de	149ef	142e-g		
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	51.5cd	56.1b-d	53.8bc	89.2cd	98.0cd	93.6cd	140cd	154cd	147c-e		
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	50.6c-e	54.9c-f	52.7b-e	84.4ef	93.6e-g	89.0ef	135e	148ef	141fg		
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	52.2c	57.1bc	54.7b	91.2bc	100bc	95.7bc	143bc	157bc	150bc		
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	51.8cd	56.3b-d	54.0bc	90.1b-d	98.1cd	94.1cd	142bc	154cd	148cd		
T ₁₉ : Cotton sole crop (100% RDF and FYM)	51.4cd	56.1b-d	53.8bc	-	-	-	51.4j	56.1n	53.8m		
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	77.2hi	84.5k-m	80.8jk	77.2i	84.5m	80.81		
Mean	50.3	55.0	52.6	84.6	93.1	88.7	128	140	137		
S.Em. <u>+</u>	1.11	0.95	1.03	1.04	1.22	1.13	1.71	1.38	1.56		
C.V. (%)	9.25	7.54	7.96	8.35	8.91	9.1	18.8	16.4	13.2		

Table 3. Nitrogen uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced by INM in cotton and soybean intercropping system

Treatments	Nitrogen uptake (kg ha ⁻¹)									
		Cotton		Soybean			Cotton + soybean			
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T₁: 100% RDF for cotton and soybean	64.1f	74.2h	69.1e	140j	134k	137g	204k	208j	206i	
T ₂ : 125% RDF for cotton and soybean	77.2a	85.2ab	81.2a	162a	173a	167ab	239a	258ab	248a	
T ₃ : 150% RDF for cotton and soybean	78.1a	86.1a	82.1a	163a	174a	168a	241a	260a	250a	
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	73.1b	83.2b-d	78.1b	158b	168d	163c-e	230b	251de	241bc	
T_5 : T_1 + FYM 2.5 t ha ⁻¹	68.0de	79.1g	73.5d	144hi	158j	151f	210hi	237i	225h	
T_6 : $T_1 + FYM 5 t ha^{-1}$	68.1de	79.1g	73.6d	146gh	159ij	152f	214hi	238i	226f-h	
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	67.3e	82.2c-f	74.7cd	144hi	164ef	154f	211ij	246fg	229e-g	
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	67.4e	82.5c-e	74.9cd	144hi	165e	154f	211ij	247ef	229ef	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	66.1ef	81.0d-g	73.5d	142ij	162g	152f	208j	243gh	225gh	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	66.2ef	81.3d-g	73.7d	143i	163fg	153f	209j	244fg	227e-h	
T_{11} : T_1 + Vermicompost 1.25 t ha ⁻¹	68.1de	80.3e-g	74.2d	147gh	160hi	153f	215gh	240hi	227e-h	
T_{12} : T_1 + Vermicompost 2.5 t ha ⁻¹	70.1cd	81.1d-g	75.6cd	148fg	161gh	154f	218fg	242gh	230e	
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	152de	171bc	161c-e	222de	255b-d	238cd	
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	151e	170c	160e	221ef	254cd	237d	
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	71.0bc	83.2b-d	77.1bc	154cd	168d	161de	225cd	251de	238cd	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	84.3a-c	77.2bc	150ef	172ab	161de	220ef	256a-c	238cd	
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	72.1bc	85.1ab	78.6b	156bc	173a	164bc	220c	258ab	243b	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	71.1bc	85.1ab	78.1b	155c	173a	164cd	226c	258ab	242b	
T ₁₉ : Cotton sole crop (100% RDF and FYM)	71.2bc	80.1fg	75.7cd	-	-	-	71.2m	80.11	75.7k	
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	142ij	127I	134g	142I	127m	134j	
Mean	70.0	82.2	76.1	149	163	156	208	233	225	
S.Em. <u>+</u>	0.79	0.71	0.75	0.90	1.12	1.02	1.03	1.26	1.15	
C.V. (%)	7.8	6.4	6.8	6.2	5.4	5.9	17.3	19.5	18.4	

Table 4. Phosphorus uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

Treatments				Phospho	orus uptak	e (kg ha ⁻¹)			
		Cotton		Soybean			Cotton + soybean		
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T ₁ : 100% RDF for cotton and soybean	8.40k	9.53f	8.91k	11.7j	13.5i	12.6i	20.1k	23.0k	21.6k
T ₂ : 125% RDF for cotton and soybean	14.8a	16.6a	15.7ab	24.3b	27.5a	25.9a	39.1a	44.1a	41.6a
T ₃ : 150% RDF for cotton and soybean	15.1a	17.1a	16.1a	26.0a	29.0a	27.5a	41.2a	46.1a	43.7a
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	14.1ab	16.0ab	15.0a-c	21.6c	24.4b	23.0b	35.8b	40.4b	38.1b
T_5 : T_1 + FYM 2.5 t ha ⁻¹	9.80ij	11.1ef	10.4h-k	17.5ef	19.8d-f	18.7d-f	27.3f-h	31.0f-h	29.1f-h
T_6 : $T_1 + FYM 5 t ha^{-1}$	10.2ĥ-j	11.4d-f	10.8g-k	17.8ef	20.1d-f	19.0d-f	28.0fg	31.5e-g	29.8fg
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	9.20jk	10.5ef	9.88i-k	16.3fg	18.1fg	17.2fg	25.5hi	28.7hi	27.1hi
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	9.47i-k	10.3ef	9.88i-k	16.7f	19.5ef	18.2ef	26.3gh	29.8gh	28.1gh
T ₉ : T ₁ + Pongamia 2.5 t ha ⁻¹	8.90jk	10.0ef	9.48jk	13.8hi	15.3hi	14.5hi	22.7j	25.4jk	24.0j
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	9.00jk	10.2ef	9.64i-k	14.6gh	16.2gh	15.4gh	23.6ij	26.5ij	25.0ij
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	10.5g-i	12.6c-f	11.6f-j	17.9ef	20.3d-f	19.1d-f	28.5fg	32.9ef	30.7ef
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	11.2f-h	12.4c-f	11.8f-i	18.3ef	21.4de	19.8de	29.5d-f	33.9de	31.7d-f
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	12.4c-f	14.2a-d	13.3c-f	19.3de	22.1cd	20.7cd	31.8cd	36.3cd	34.0cd
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	12.1d-f	13.1b-e	12.6d-g	19.2de	21.2de	20.2de	31.4de	34.3de	32.8de
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	13.1b-d	14.3a-d	13.7b-f	20.7cd	23.8bc	22.2bc	33.9bc	38.1bc	36.0bc
T ₁₆ : T ₁ + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	11.7e-g	13.0b-e	12.3e-h	17.6ef	21.2de	19.4de	29.3ef	34.2de	31.7d-f
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	14.0ab	15.5a-c	14.8a-d	21.1cd	24.2bc	22.7bc	35.1b	39.8b	37.5b
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	13.4bc	15.1a-c	14.3a-e	21.3c	24.1bc	22.7bc	34.8b	39.3b	37.0b
T ₁₉ : Cotton sole crop (100% RDF and FYM)	12.7c-e	14.3a-d	13.5c-f	-	-	-	12.71	14.3I	13.5l
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	12.5ij	14.2hi	13.3i	12.5I	14.21	13.3I
Mean	11.6	13.0	12.3	18.3	20.9	19.6	28.4	32.2	31.2
S.Em. <u>+</u>	0.41	0.86	0.68	0.65	0.73	0.67	0.77	0.90	0.84
C.V. (%)	19.2	20.4	18.7	20.1	21.3	19.4	26.1	13.2	12.4

Table 5. Phosphorus uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced by INM in cotton and soybean intercropping system

Treatments				Phospho	rus uptak	e (kg ha ⁻¹)			
		Cotton			Soybean		Cotton + soybean		
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T ₁ : 100% RDF for cotton and soybean	64.1f	74.2h	69.1e	140j	134k	137g	204k	208j	206i
T ₂ : 125% RDF for cotton and soybean	77.2a	85.2ab	81.2a	162a	173a	167ab	239a	258ab	248a
T ₃ : 150% RDF for cotton and soybean	78.1a	86.1a	82.1a	163a	174a	168a	241a	260a	250a
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	73.1b	83.2b-d	78.1b	158b	168d	163c-e	231b	251de	241bc
T_5 : T_1 + FYM 2.5 t ha ⁻¹	68.0de	79.1g	73.5d	144hi	158j	151f	212hi	237i	225h
T_6 : $T_1 + FYM 5 t ha^{-1}$	68.1de	79.1g	73.6d	146gh	159ij	152f	214hi	238i	226f-h
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	67.3e	82.2c-f	74.7cd	144hi	164ef	154f	211ij	246fg	229e-g
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	67.4e	82.5c-e	74.9cd	144hi	165e	154f	211ij	247ef	229ef
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	66.1ef	81.0d-g	73.5d	142ij	162g	152f	208j	243gh	225gh
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	66.2ef	81.3d-g	73.7d	143i	163fg	153f	209j	244fg	227e-h
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	68.1de	80.3e-g	74.2d	147gh	160hi	153f	215gh	240hi	227e-h
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	70.1cd	81.1d-g	75.6cd	148fg	161gh	154f	218fg	242gh	230e
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	152de	171bc	161c-e	222de	255b-d	238cd
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	151e	170c	160e	221ef	254cd	237d
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	71.0bc	83.2b-d	77.1bc	154cd	168d	161de	225cd	251de	238cd
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	84.3a-c	77.2bc	150ef	172ab	161de	220ef	256a-c	238cd
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	72.1bc	85.7ab	78.6b	156bc	173a	164bc	228c	258ab	243b
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	71.1bc	85.1ab	78.1b	155c	173a	164cd	226c	258ab	242b
T ₁₉ : Cotton sole crop (100% RDF and FYM)	71.2bc	80.1fg	75.7cd	-	-	-	71.2m	80.I	75.7k
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	142ij	127I	134g	1421	127m	134j
Mean	70.0	82.2	76.1	149	163	156	208	233	225
S.Em. <u>+</u>	0.79	0.71	0.75	0.90	1.12	1.02	1.03	1.26	1.15
C.V. (%)	14.7	7.20	13.2	8.25	9.40	7.26	23.1	20.1	19.2

Table 6. Potassium uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

Treatments	Potassium uptake (kg ha ⁻¹)									
	Cotton				Soybean			Cotton + soybean		
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100% RDF for cotton and soybean	31.4g	34.8h	33.1h	44.5h	51.1j	47.8i	76.0i	86.0i	81.0i	
T ₂ : 125% RDF for cotton and soybean	46.8a	52.3a	49.5a	63.2a	73.1a	68.2a	110a	125a	117a	
T ₃ : 150% RDF for cotton and soybean	47.3a	53.8a	50.5a	64.7a	74.2a	69.5a	112a	128a	120a	
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	42.6b	47.3b	45.0b	59.4b	68.1bc	63.8b	102b	115b	108b	
T_5 : T_1 + FYM 2.5 t ha ⁻¹	34.5d-f	38.2fg	36.3fg	51.3e-g	59.1gh	55.2fg	85.9g	97.4g	91.6g	
T_6 : $T_1 + FYM 5 t ha^{-1}$	35.7с-е	40.1ef	37.9ef	54.2c-e	62.2ef	58.2de	89.9f	102f	96.1f	
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	33.4e-g	37.3f-h	35.3f-h	50.3fg	58.1hi	54.2f-h	83.8gh	95.4gh	89.6h	
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	33.5e-g	37.4f-h	35.4f-h	51.5d-f	59.3gh	55.4fg	85.0g	96.8gh	90.9gh	
T ₉ : T ₁ + Pongamia 2.5 t ha ⁻¹	32.5fg	36.1gh	34.3gh	48.4g	56.5i	52.5h	80.9h	92.7h	86.8gh	
T ₁₀ : T ₁ + Pongamia 5 t ha ⁻¹	33.2e-g	37.6f-h	35.4f-h	50.0fg	57.1hi	53.6gh	83.3gh	94.7gh	89.0h	
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	36.2cd	40.4ef	38.3ef	54.2c-e	62.6ef	58.4de	90.5f	103f	96.7gh	
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	36.9cd	42.2de	39.5de	54.5cd	63.2ef	58.9de	91.4f	105ef	98.4ef	
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	38.2c	43.3c-e	40.7de	58.4b	66.1cd	62.2bc	96.6de	109с-е	103ef	
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	37.9c	42.3de	40.1de	55.4c	64.1de	59.8cd	93.4ef	106d-f	99.9cd	
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	37.4c	42.2de	39.8de	59.4b	68.2bc	63.8b	96.8de	110cd	103d-f	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	38.6c	44.9b-d	41.7cd	54.5cd	63.1ef	58.8de	93.1ef	108c-e	100cd	
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	37.3c	43.1de	40.2de	60.4b	69.3b	64.8b	97.7cd	112bc	105de	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	41.4b	46.2bc	43.8bc	60.0b	68.5bc	64.3b	101bc	114b	108b	
T ₁₉ : Cotton sole crop (100% RDF and FYM)	37.4c	42.3de	39.8de	-	-	-	37.4k	42.3k	39.8k	
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	52.1d-f	60.8fg	56.5ef	52.1j	60.8j	56.5j	
Mean	37.5	42.2	39.8	55.1	63.5	59.2	88.0	100	96.1	
S.Em. <u>+</u>	0.87	1.00	0.94	0.95	0.82	0.88	1.30	1.42	1.36	
C.V. (%)	12.1	7.84	11.6	9.75	6.83	8.41	19.6	13.2	17.2	

Table 7. Potassium uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced by INM in cotton and soybean intercropping system

Treatments	Potassium uptake (kg ha ⁻¹)										
		Cotton		Soybean			Cotton + soybean				
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled		
T ₁ : 100% RDF for cotton and soybean	57.4i	68.2i	62.8h	76.1g	84.2j	80.2h	133j	152l	143f		
T ₂ : 125% RDF for cotton and soybean	72.3a	77.4ab	74.8a	95.1a	103a	99.3a	167a	181a	174a		
T ₃ : 150% RDF for cotton and soybean	73.1a	78.3a	75.7a	96.2a	104a	100a	169a	182a	175a		
T ₄ : 100% FYM and RDF for cotton and soybean (RC)	68.2b	72.3d-h	70.3bc	91.1b	97.2b-d	94.2c-e	159b	169d-f	164bc		
T_5 : T_1 + FYM 2.5 t ha ⁻¹	60.1f-h	70.1hi	65.1f-h	83.1de	90.4i	86.7g	143gh	160k	151e		
T_6 : $T_1 + FYM 5 t ha^{-1}$	61.2e-g	70.4g-i	65.8e-g	85.6cd	91.1i	88.4fg	146fg	161jk	154de		
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	59.1g-i	72.2d-h	65.6e-g	82.1ef	95.2d-f	88.7fg	141hi	167f-h	154de		
T ₈ : T ₁ + Gliricidia 5 t ha ⁻¹	59.2g-i	72.3d-h	65.8e-g	83.1de	96.2c-e	89.7f	142hi	168e-g	155de		
T ₉ : T ₁ + Pongamia 2.5 t ha ⁻¹	58.2hi	71.1f-h	64.7gh	80.2f	93.6f-h	86.9g	138i	164h-j	151e		
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	57.9hi	71.4e-h	64.6gh	80.9ef	94.1e-g	87.5fg	138i	165g-i	152de		
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	62.2ef	70.5g-i	66.3e-g	86.1c	91.3hi	88.7fg	148ef	161i-k	155de		
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	62.1ef	71.2f-h	66.6d-g	86.4c	92.3g-i	89.3fg	148ef	163i-k	156d		
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	63.9de	74.5cd	69.2b-d	89.6b	98.2bc	93.9de	153cd	172cd	163c		
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	63.3de	73.6c-f	68.4b-e	87.1c	98.2bc	92.7e	150d-f	171c-e	161c		
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	63.1de	73.4d-g	68.2b-e	92.3b	98.5bc	95.4cd	155bc	171c-e	163c		
T ₁₆ : T ₁ + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	65.2cd	74.3c-e	69.7bc	86.2c	99.2b	92.7e	151de	173c	162c		
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	63.9de	76.3a-c	70.1bc	92.2b	103a	97.9ab	156bc	180ab	168b		
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	66.7bc	75.1b-d	70.9b	91.2b	101a	96.5bc	157b	177b	167b		
T ₁₉ : Cotton sole crop (100% RDF and FYM)	62.1ef	73.2d-g	67.7c-f	-	-	89.7f	62.1I	73.2n	67.7h		
T ₂₀ : Soybean sole crop (100% RDF and FYM)	-	-	-	85.1cd	94.2e-g	-	85.1k	94.2m	89.7g		
Mean	63.1	73.0	68.0	86.8	96.2	91.5	142	160	154		
S.Em. <u>+</u>	0.81	0.91	0.86	0.84	0.79	0.82	1.28	3.49	1.25		
C.V. (%)	8.10	6.41	6.82	6.30	8.43	7.31	17.2	16.9	15.2		

1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17. The higher uptake of nitrogen, phosphorus, and potassium is due to higher uptake by cotton and soybean.

Phosphorus uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 4 and 5). Among the different treatments at 50 per cent flowering, T₃ RDF for cotton and sovbean) recorded significantly higher phosphorus uptake and it was on par with T2 (125% RDF for cotton and soybean) compared to rest of the intercropping systems during both years and in pooled data. At harvest, T₃ (150% RDF for cotton and soybean) recorded significantly higher phosphorus uptake and it was on par with T2 (125% RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T₁₈ (T₁ + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17.

Potassium uptake differed significantly due to INM treatments during both the years and in pooled data (Tables 6 and 7). Among the different treatments at 50 per cent flowering, T₃ (150% RDF for cotton and soybean) recorded significantly higher potassium uptake and it was on par with T2 (125% RDF for cotton and soybean) compared to rest of the intercropping systems during both years and in pooled data. At harvest, T₃ (150% RDF for cotton and soybean) recorded significantly higher potassium uptake and it was on par with T2 (125% RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) during 2016-17. Use of organic manures along with recommended dose of fertilizers resulted in the release of nutrients which are available to crop for a longer period.Biodegradation of manures exerted a favorable effect on the release of nutrients, which depended on the type, the quantity of residues and stage of decomposition [13].

4. CONCLUSIONS

Farmers can adopt a fertilizer dose of 125 : 62.5 : 62.5 kg N, P_2O and K_2O ha⁻¹ in cotton and soybean intercropping system or 100: 50: 50 kg N, P_2O_5 and K_2O ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean intercropping for efficient utilization of mineral nutrients in soil to get profitable yields.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Willey RW. Intercropping, its importance, and research needs, Part – I, Competition and yield advantages. Field Crop Abst. 1979;32:1-10.
- Anonymous. Improved Cultivation Practices, Directorate of Extension, UAS, Dharwad, India. 2014;177-178.
- Marimuthu S, Surendran U, Subbian P. Productivity, nutrient uptake and postharvest soil fertility as influenced by cottonbased cropping system with integrated nutrient management practices in semiarid tropics. Archives of Agronomy and Soil Sci. 2014;60(1):87-101.
- Lokesh BS, Malabasri TA, Vyakarahal BS, Biradar NK, Kotikal YK. Studies on organic seed production in cotton cultivars. Karnataka J. Agric. Sci. 2008;21(3):349-352.
- 5. Piper CS. Soil and plant analysis. Academic Press, New York. 1966;47-77.
- Sparks. Methods of soil analysis part-3, chemical methods, soil Sci. USA, Wisconsin. 1996;377.
- 7. Sharawat KL, Buford JR. Modification of alkaline permanganate method for assessing the availability of soil nitrogen in upland soils. Soil Sci. 1982; 133:53-57.
- Gomez KA, Gomez AA. Statistical procedure for agricultural research. John Wiley and Sons Publishers, New Delhi, India: 1984.
- Halemani HL, Hallikeri SS, Nandagavi RA, Harishkumar HS. Effect of organics on cotton productivity and physiological properties of soil. Indian Agric. 2004;33: 221-225.
- Babalad HB. Integrated nutrient management for sustainable production in soybean based cropping systems. Ph. D. Thesis, Univ. Agric. Sci. Dharwad, India; 1999.
- 11. Channagouda RF, Babalad HB. Impact of organic farming practices on quality parameters of cotton. Res. on Crops. 2015;16 (4):752-756.

- 12. Nawlakhe SM, Mankar, DD. Nitrogen uptake in cotton + greengram intercropping system as influenced by integrated nutrient management. Crop Res. 2011;41(1):59-63.
- Mkandwire RW, Likoswe AA. The effect of intercropping cotton with legumes on crop yields and yield components. Agron Journal. 2000;8:41-46.

© 2018 Pujar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: story for this paper can be a

The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history/24096