Faictn
Reweerch Sosernal of”

Manthesmatics

Asian Research Journal of Mathematics

- 10(1): 1-6, 2018; Article no.ARJOM.42293
ISSN: 2456-477X

Extending the Theory of k-Fibonacci and k-Lucas Numbers

Lovemore Mamombe!”

Ilndependent Researcher, Harare, Zimbabwe.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2018/42293

Editor(s):

(1) Radoslaw Jedynak, Department of Computer Science and Mathematics, Kazimierz Pulaski University of Technology and
Humanities, Poland.

Reviewers:

(1) Robert Sacco, Canada.

(2) O. Omenyi Louis, Alex Ekwueme Federal University, Nigeria.

Complete Peer review History: http://www.sciencedomain.org/review-history/25140

Received: 19" March 2018

— Accepted: 1% June 2018
_Short Communication Published: 14" June 2018

Abstract

fa:k:m,n+2 = kfa:k:m,n+1 + amfa:k:m,n' akmnz=1
fa:k:m,l = 1'fa:k:m,Z = k
lommnez = klaxmner + amlggmn @, k,mn =21

The a:k:m-Fibonacci sequences Fa:k:m,n{ and the

a:k:m-Lucas sequences Lg.g.mn { are introduced. The

logma = K lagemz = k? + 2am
well-known k-Fibonacci and k-Lucas sequences become a particular case (a=m=1). One might be
interested to meet the equally famous Jacobsthal sequence at a = 2,k = m = 1. Our brief results capture
the most important properties relating to the assemblage mechanics of these sequences.

Keywords: a:k:m-Fibonacci numbers; a:k:m-Lucas numbers; Jacobsthal numbers; k-Fibonacci numbers;
k-Lucas numbers; metallic means.

1 Introduction

The sequence of numbers

F,=112358, .. (1.1)
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well-known as the Fibonacci numbers in the literature [1-32], is arithmetically generated by the recurrence
relation

frrz =farrtfon 21 (1.2)

with initial conditions

h=f=1 (1.3)
The k-Fibonacci numbers introduced by Falcon and Plaza [1] are defined by

fensz = Kfinsr + fin nk 21

F { 14
fon fea=Lfra=k (L4
In this communication we introduce the a:k:m-Fibonacci numbers defined by
F {fa:k:m,n+2 = kfa:k:m,n+1 + amfa:k:m,n' akmn=1 (1 5)
akemn fa:k:m,l = 1!fa:k:m,2 = k '
and the related a:k:m-Lucas numbers defined by
lomnez = klagmner + amlgemp @, k,mn = 1
La:k:mn ' ) 2 ' (1-6)
’ la:k:m,l = k! la:k:m,z =k + 2am
based on the positive solution of the quadratic equation
ax?—kx—m=0 .7
Let’s denote this solution Q%™ We have that
Qkm _ k+VkZ+4am (1 8)
a = 2a ’

Our very brief results are intended to show that the basic properties of the sequence (1.1) and the Lucas
sequence are retained in all the a:k:m-Fibonacci and a:k:m-Lucas sequences respectively. One might be
interested to learn that, for instance, the well-known Jacobsthal numbers

Fpain = Frion = 1,1,3511, .. (1.9)
are in fact employing the same concept as the Fibonacci, Pell, etc. numbers.
2 Results
Theorem 2.1

a" Q™" = fakmnQ%" = Mfokmn-1,n 2 1 (2.1)
Proof

By induction. Base case: n = 1,

Q™ — Q™ = 0 = Mfypemo
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Inductive Hypothesis:

@M Q™)' = farmiQa" = Mfakm,i-1i 2 1 (2:2)
Inductive Conclusion:

a Q™™ = fpemis126™ = Mfgmpi = 1 (233)
We have that

ai(QIé:m)Hl. - fa:k:m,i+19,c€l:m

. mA L . . .
= a'(Qe™) (&™) = kfaremiQa™ — AMfasmi-1Q6"
= I (@ (QE™)' = Fotom Q™) + T (40 QUM™Y — amfy i Q™
= kmfa:k:m,i—l + m(ai_l)( Qlccl:m)i_l - amfa:k:m,i—lgl;m

i— k: i— B

= kmfa:k:m,i—l + ma((al 2)( Qa m)L t— fa:k:m,i—lgg m)
= kmfa:k:m,i—l + amzfa:k:m,i—Z
= mfa:k:m,i

Induction is concluded, proof'is complete.

Theorem 2.2

k:m — n
fakmn+1 = UarmnQq + (Qk:m) n=1 (2.4)
Proof

By induction. Base case:n =1,

m

aQf™ + (Q_k—m)1 == Jaiemz

Inductive Hypothesis:

. — i .
fa:k:m,i+1 = afa:k:m,in;..m + (Qg";) , 1L = 1 (25)

Inductive Conclusion: We prove that

) Zm\i+1
fa:k:m,i+2 = afa:k:m,i+1Qlt§..m + (Qlén:n) , 1L = 1 (26)

We obtain

i+1
k:m -m
afa:k:m,i+1Qa + (Qk:m)
a

. - i 2 _ i )
=k (afa:k:m,iglé'm + (_m) ) - m( m ) + amzfa:k:m,i—lglé.m

akm 2

-m

ke i-1
= kfarkmivt + am(afapmi-1Qq " + (_) )

Q}a(.:m
= kfa:k:m,i+1 + amfa:k:m,i

= fa:k:m,i+2
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Having concluded the induction process, proposition is true.

Theorem 2.3
_ n
latemn = @(QE™" + (Sg) m =1 (27)
of
Derivation
Notice that, by definition,
la:k:m,n = amfa:k:m,n—l + fa:k:m,n+1 (2-8)

From proved equations (2.1) and (2.4) this becomes

. . X _ n
an(QZ-m)n - fa:k:m,nQZ.m + afa:k:m,nQZ.m + ( - )

k:m
— ety + (' )

Qlé:‘m

Theorems 2.1 to 2.3 capture the basic properties of a:k:m-Fibonacci and a:k:m-Lucas sequences relating to
assembly mechanics. Without further proof we state Catalan’s and d’Ocagne’s identities respectively:

faz:k:m,n - fa:k:m,n+rfa:k:m,n—r = (_1)n—r (am)n_rfaz:k:m,r!n'r =1 (29)
fa:k:m,rfa:k:m,n+1 - fa:k:m,nfa:k:m,r+1 = (_1)n(am)nfa:k:m,r—nr nrz 1 (210)
3 Conclusion

The a:k:m-Fibonacci and a:k:m-Lucas sequences extend not only the theory of k-Fibonacci and k-Lucas
numbers but of metallic means [10] also. That we have shown that the Jacobsthal numbers [19] for example
employ the same concept as the classic Fibonacci numbers goes a long way in the unification of seemingly
disparate ideas and opening new avenues of research.
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