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Abstract 
 

The a:k:m-Fibonacci sequences ܨ௔:௞:௠,௡ ൜
௔݂:௞:௠,௡ାଶ ൌ ݇ ௔݂:௞:௠,௡ାଵ ൅ ܽ݉ ௔݂:௞:௠,௡, ܽ, ݇,݉, ݊ ൒ 1

௔݂:௞:௠,ଵ ൌ 1, ௔݂:௞:௠,ଶ ൌ ݇
 and the 

a:k:m-Lucas sequences ܮ௔:௞:௠,௡ ቊ
݈௔:௞:௠,௡ାଶ ൌ ݈݇௔:௞:௠,௡ାଵ ൅ ݈ܽ݉௔:௞:௠,௡, ܽ, ݇,݉, ݊ ൒ 1

݈௔:௞:௠,ଵ ൌ ݇, ݈௔:௞:௠,ଶ ൌ ݇ଶ ൅ 2ܽ݉
 are introduced. The 

well-known k-Fibonacci and k-Lucas sequences become a particular case (a=m=1). One might be 
interested to meet the equally famous Jacobsthal sequence at ܽ ൌ 2, ݇ ൌ ݉ ൌ 1. Our brief results capture 
the most important properties relating to the assemblage mechanics of these sequences. 
 

 
Keywords: a:k:m-Fibonacci numbers; a:k:m-Lucas numbers; Jacobsthal numbers; k-Fibonacci numbers; 

k-Lucas numbers; metallic means. 
 

1 Introduction 
 
The sequence of numbers 

 
௡ܨ ൌ 1,1,2,3,5,8, …                                                                       (1.1) 
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well-known as the Fibonacci numbers in the literature [1-32], is arithmetically generated by the recurrence 
relation 
 

௡݂ାଶ ൌ ௡݂ାଵ ൅ ௡݂, ݊ ൒ 1                                                                                   (1.2) 
 
with initial conditions  
 

ଵ݂ ൌ ଶ݂ ൌ 1                                             (1.3) 
 
The k-Fibonacci numbers introduced by Falcon and Plaza [1] are defined by  
 

௞,௡ܨ ൜
௞݂,௡ାଶ ൌ ݇ ௞݂,௡ାଵ ൅ ௞݂,௡,   ݊, ݇ ൒ 1

௞݂,ଵ ൌ 1, ௞݂,ଶ ൌ ݇
               (1.4) 

 
In this communication we introduce the a:k:m-Fibonacci numbers defined by  
 

௔:௞:௠,௡ܨ ൜
௔݂:௞:௠,௡ାଶ ൌ ݇ ௔݂:௞:௠,௡ାଵ ൅ ܽ݉ ௔݂:௞:௠,௡, ܽ, ݇,݉, ݊ ൒ 1

௔݂:௞:௠,ଵ ൌ 1, ௔݂:௞:௠,ଶ ൌ ݇
              (1.5) 

 
and the related a:k:m-Lucas numbers defined by 
 

௔:௞:௠,௡ܮ ቊ
݈௔:௞:௠,௡ାଶ ൌ ݈݇௔:௞:௠,௡ାଵ ൅ ݈ܽ݉௔:௞:௠,௡, ܽ, ݇,݉, ݊ ൒ 1

݈௔:௞:௠,ଵ ൌ ݇, ݈௔:௞:௠,ଶ ൌ ݇ଶ ൅ 2ܽ݉
              (1.6) 

 
based on the positive solution of the quadratic equation  
 

ଶݔܽ െ ݔ݇ െ݉ ൌ 0                  (1.7) 
 
Let’s denote this solution Ω௔

௞:௠.  We have that 
 

Ω௔
௞:௠ ൌ

௞ାඥ௞మାସ௔௠

ଶ௔
                  (1.8) 

 
Our very brief results are intended to show that the basic properties of the sequence (1.1) and the Lucas 
sequence are retained in all the a:k:m-Fibonacci and a:k:m-Lucas sequences respectively. One might be 
interested to learn that, for instance, the well-known Jacobsthal numbers 
 

ଶ:ଵ:ଵ,௡ܨ ൌ ଵ:ଵ:ଶ,௡ܨ ൌ 1,1,3,5,11,…                 (1.9) 
 
are in fact employing the same concept as the Fibonacci, Pell, etc. numbers. 
 

2 Results 
 
Theorem 2.1 
 

ܽ௡ିଵሺΩ௔
௞:௠ሻ௡ െ ௔݂:௞:௠,௡Ω௔

௞:௠ ൌ ݉ ௔݂:௞:௠,௡ିଵ, ݊ ൒ 1               (2.1) 
 
Proof 
 
By induction. Base case: ݊ ൌ 1, 
 

Ω௔
௞:௠ െΩ௔

௞:௠ ൌ 0 ൌ ݉ ௔݂:௞:௠,଴  
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Inductive Hypothesis: 
 

ܽ௜ିଵሺΩ௔
௞:௠ሻ௜ െ ௔݂:௞:௠,௜Ω௔

௞:௠ ൌ ݉ ௔݂:௞:௠,௜ିଵ, ݅ ൒ 1               (2.2) 
 
Inductive Conclusion: 
 

ܽ௜ሺΩ௔
௞:௠ሻ௜ାଵ െ ௔݂:௞:௠,௜ାଵΩ௔

௞:௠ ൌ ݉ ௔݂:௞:௠,௜, ݅ ൒ 1               (2.3) 
 
We have that 
 

ܽ௜ሺΩ௔
௞:௠ሻ௜ାଵ െ ௔݂:௞:௠,௜ାଵΩ௔

௞:௠  

ൌ ܽ௜൫Ω௔
௞:௠൯

௜
൫Ω௔

௞:௠൯ െ ݇ ௔݂:௞:௠,௜Ω௔
௞:௠ െ ܽ݉ ௔݂:௞:௠,௜ିଵΩ௔

௞:௠  

ൌ ݇ ቀܽ௜ିଵ൫Ω௔
௞:௠൯

௜
െ ௔݂:௞:௠,௜Ω௔

௞:௠ቁ ൅
ି௞ାඥ௞మାସ௔௠

ଶ௔
ሺܽ௜ሻሺΩ௔

௞:௠ሻ௜ െ ܽ݉ ௔݂:௞:௠,௜ିଵΩ௔
௞:௠  

ൌ ݇݉ ௔݂:௞:௠,௜ିଵ ൅ ݉ሺܽ௜ିଵሻሺ Ω௔
௞:௠ሻ௜ିଵ െ ܽ݉ ௔݂:௞:௠,௜ିଵΩ௔

௞:௠  
ൌ ݇݉ ௔݂:௞:௠,௜ିଵ ൅ ݉ܽሺሺܽ௜ିଶሻሺ Ω௔

௞:௠ሻ௜ିଵ െ ௔݂:௞:௠,௜ିଵΩ௔
௞:௠ሻ  

ൌ ݇݉ ௔݂:௞:௠,௜ିଵ ൅ ܽ݉ଶ
௔݂:௞:௠,௜ିଶ  

ൌ ݉ ௔݂:௞:௠,௜  
 
Induction is concluded, proof is complete. 
 
Theorem 2.2 
 

௔݂:௞:௠,௡ାଵ ൌ ܽ ௔݂:௞:௠,௡Ω௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௡

, ݊ ൒ 1               (2.4) 

 
Proof 
 
By induction. Base case: ݊ ൌ 1, 
 

ܽΩ௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

ଵ

ൌ ݇ ൌ ௔݂:௞:௠,ଶ  

 
Inductive Hypothesis: 
 

 ௔݂:௞:௠,௜ାଵ ൌ ܽ ௔݂:௞:௠,௜Ω௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௜

, ݅ ൒ 1                (2.5) 

 
Inductive Conclusion: We prove that 
 

௔݂:௞:௠,௜ାଶ ൌ ܽ ௔݂:௞:௠,௜ାଵΩ௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௜ାଵ

, ݅ ൒ 1               (2.6) 

 
We obtain 
 

ܽ ௔݂:௞:௠,௜ାଵΩ௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௜ାଵ

  

ൌ ݇ ൬ܽ ௔݂:௞:௠,௜Ω௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௜

൰ െ
௞ାඥ௞మାସ௔௠

ଶ
ቀ
ି௠

Ωೌ
ೖ:೘ቁ

௜

൅ ܽ݉ଶ
௔݂:௞:௠,௜ିଵΩ௔

௞:௠  

ൌ ݇ ௔݂:௞:௠,௜ାଵ ൅ ܽ݉ሺܽ ௔݂:௞:௠,௜ିଵΩ௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௜ିଵ

ሻ  

ൌ ݇ ௔݂:௞:௠,௜ାଵ ൅ ܽ݉ ௔݂:௞:௠,௜  
ൌ ௔݂:௞:௠,௜ାଶ  
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Having concluded the induction process, proposition is true. 
 
Theorem 2.3 
 

݈௔:௞:௠,௡ ൌ ܽ௡ሺΩ௔
௞:௠ሻ௡ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௡

, ݊ ൒ 1                (2.7) 

 
Derivation 
 
Notice that, by definition, 
 

݈௔:௞:௠,௡ ൌ ܽ݉ ௔݂:௞:௠,௡ିଵ ൅ ௔݂:௞:௠,௡ାଵ                (2.8) 
 
From proved equations (2.1) and (2.4) this becomes 
 

ܽ௡ሺΩ௔
௞:௠ሻ௡ െ ௔݂:௞:௠,௡Ω௔

௞:௠ ൅ ܽ ௔݂:௞:௠,௡Ω௔
௞:௠ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௡

  

ൌ ܽ௡ሺΩ௔
௞:௠ሻ௡ ൅ ቀ

ି௠

Ωೌ
ೖ:೘ቁ

௡

  

 
Theorems 2.1 to 2.3 capture the basic properties of a:k:m-Fibonacci and a:k:m-Lucas sequences relating to 
assembly mechanics. Without further proof we state Catalan’s and  d’Ocagne’s identities respectively: 
 

௔݂:௞:௠,௡
ଶ െ ௔݂:௞:௠,௡ା௥ ௔݂:௞:௠,௡ି௥ ൌ ሺെ1ሻ௡ି௥ሺܽ݉ሻ௡ି௥ ௔݂:௞:௠,௥

ଶ , ݊, ݎ ൒ 1             (2.9) 
 

௔݂:௞:௠,௥ ௔݂:௞:௠,௡ାଵ െ ௔݂:௞:௠,௡ ௔݂:௞:௠,௥ାଵ ൌ ሺെ1ሻ௡ሺܽ݉ሻ௡ ௔݂:௞:௠,௥ି௡, ݊, ݎ ൒ 1          (2.10) 
 

3 Conclusion 
 
The a:k:m-Fibonacci and a:k:m-Lucas sequences extend not only the theory of k-Fibonacci and k-Lucas 
numbers but of metallic means [10] also. That we have shown that the Jacobsthal numbers [19] for example 
employ the same concept as the classic Fibonacci numbers goes a long way in the unification of seemingly 
disparate ideas and opening new avenues of research. 
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