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ABSTRACT 
 

The coagulant optimal dose determination is an issue of particular concern in water treatment 
processes. Coagulant dosing is correlated to raw water quality related to some parameters 
(Turbidity, pH, Temperature and Conductivity). The aim of this study is to provide water treatment 
operators with a tool that enables to predict and sometimes replace the manual method (jar 
testing). The model is developed on the basis of current process data recorded in water treatment 
plant located in the middle of Morocco (Meknes). This non linear model is related to turbidity, pH 
and temperature parameters. Comparison between aluminum doses measured and the alum 
doses calculated by the elaborated model shows a very interesting result. In fact, modeling can 
reduce aluminum sulfate consumption by more than 10%. Thus, the model can be applied in 
determining aluminum doses in the water treatment plant and can be extended to others.   
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1. INTRODUCTION 
 
The demand on water supply is increasing over 
the last century due to improved lifestyle, 
industrial development and population growth. 
This increased demand is facing a paradox to 
produce treated water with high quality at lower 
cost. In order to reduce the water cost, it is very 
important to optimize the operating expenses in 
the water treatment plant (power, chemicals and 
operator’s expenses) and many measures 
should be performed in this vision.   
 
Optimization of water treatment plant is not a 
disciplinary to maximize the treatment objective 
and minimize the cost of produced water. But it 
consists on the understanding of the treatment 
plant functioning and treasure the experience of 
the operators in dealing with all treatment 
process related to different aspects.   
 
The treatment of drinking water comprises the 
coagulation, flocculation, sedimentation, filtration 
and disinfection of raw water produced by the 
springs. During the rainfall period, the water’s 
turbidity increases, colloidal particles are 
removed in the treatment plant by means of a 
chemical coagulation process: Consisting in the 
charge destabilization of the suspended particles 
by adding coagulant. The coagulant used is 
aluminum sulfate; it is the most widely used 
coagulant in Morocco as well as many other 
countries in the drinking water industry. It is 
mainly used because of its effectiveness, 
accessibility and low price. As a common 
practice, aluminum sulfate is applied according to 
the jar test results. The main difficulty is to 
determine the optimal dose of aluminum sulfate 
related to raw water characteristics. Both manual 
and automatic methods are used to predict 
optimum coagulant dose [1,2,3]. Automatic 
method is ensured by streaming current 
detectors [4,5,6,7]. However, manual method is 
consisting to determine the quantity of the 
coagulant to apply experimentally and based on 
the jar test results. Jar test involves taking a raw 
water samples and applying different quantities 
of coagulant to each sample [2]. After a short 
period of time, each sample is assessed for 
water quality and the dosage that produces the 
optimal result used a set point. This operation 
should be repeated by the operators each time 
when the quality of raw water changes. The 
aluminum sulfate is the compound likely to be 
mathematically modeled and therefore its value 
can be estimated according to the data available 
in the treatment plant [8,9,10]. The optimization 

of using the coagulant is very interesting 
approach because under dosing of coagulant 
can lead to poor quality drinking water while too 
much coagulant leads to many operating 
problems (less efficient filtration and 
sedimentation, pH), health problems can 
increase the cost of treated water [11,12]. 
 
Some attempts have been made to model 
relationships between raw water quality 
characteristics and the optima coagulant dosage 
rate [13,14,15,16].   
 
This paper addresses the problem of building 
model to predict optimal coagulant dose from raw 
water characteristics (Turbidity level, pH, 
Temperature, total dissolved solids).  
 
This study was developed in a water treatment 
plant located in Meknes in the middle of 
Moroccan Kingdom, whose source is two big 
springs Bittit (630 l/s) and Ribaa (400 l/s). The 
quality of water produced by the springs changes 
according to the rainfall in the region. 
Sometimes, it can be affected by the snow in the 
Atlas Mountains. The water treatment plant, as 
part of other water resources, water to more than 
700.000 inhabitants of Meknes city, and it has a 
nominal capacity of 600 l/s of treated water.     
Fig. 1 presents a schematic overview of the 
various operations necessary to treat the water. 
 
Many measurements of variables such as: 
turbidity level, PH, conductivity, temperature is 
needed to carry out the jar test in order to 
determine aluminum sulfate optimal dose. The 
raw water variables used in this study are 
presented with the following variation levels as 
shown in Table 1. 
 

Table 1. Statistical summary of raw water 
conditions from 01/01/2013 to 31/12/2015 

(National Office of Electricity and Drinking 
Water ONEE, 2015) 

 
Variables  Min Max 
Turbidity: Bittit (NTU) 1.7 669.71 
Turbidity: Ribaa (NTU) 1.62 524.03 
pH 6.80 7.74 
Temperature: (°C) 14 24.70  
Conductivity micro s/cm 509 624 

 
In the rainfall period, the turbidity of raw water 
changes from time to time as shown in Fig. 2, the 
turbidity of the raw water can increase to reach 
levels more than 500 NTU. 
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However, the turbidity level is less than 10 NTU 
this three last years (2013, 2014 and 2015) for 
more than 88% of the year. However, in 64% of 
the year the turbidity is less than 10 NTU for the 
seven last years as shown in Table 2. 
 
Table 3 gives the max and min value of raw 
water turbidity by month from 2013 to 2015. 
 
The chemicals used in the water            
treatment process consume about 50% of total 
operating expenses of the water treatment. 

Energy cost is between 10 to 15% related to the 
total cost in 2013, 2014 and 2015 as shown in 
the Fig. 3. 
 
In addition, used as coagulant, aluminum sulfate 
(Alum) consumption is more than 70% of the 
total chemicals consumption in water treatment 
plant. Polyelectrolyte (Poly) consumption is less 
than 10% and the chlorine is between 16 and 
26% of total chemicals used in the water 
treatment plant according to the water quality as 
shown by Fig. 4. 

 

 
 

Fig. 1. Simplified synopsis of the water treatment plant 
 

 
 

Fig. 2. Statistical data of turbidity level of the spring’s water from 01/01/2013 to 31/12/2015 
(National Office of Electricity and Drinking Water ONEE, 2015) 
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Table 2. Turbidity levels distribution from 2009 to  2015 (Number of days per turbidity level) 
 

 Number of days  Total  
Year Turbidity less or 

equal than 5 NTU 
 

Turbidity more than 5 
and less or equal 
than 10 NTU 

Turbidity more than 
10 and less or 
equal than 20 NTU 

Turbidity more than 
20 and less or 
equal than 40 NTU 

Turbidity more 
than 40 NTU 

2009 147 60 101 34 23 365 
2010 0 0 113 148 104 365 
2011 0 132 144 59 30 365 
2012 301 38 17 5 5 366 
2013 260 74 23 8 0 365 
2014 247 62 32 20 4 365 
2015 184 132 34 10 5 365 

For the three last years (2013, 2014 and 2015):  
Total  691 268 89 38 9 1095 
Aggregated data 691 959 1048 1086 1095  
Percentage 63% 24% 8% 3% 1%  
Percentage of  
Aggregated data 

63% 88% 96% 99% 100%  

For the seven last years (from 2009 to 2015) : 
Total  1139 498 464 284 171 2556 
Aggregated data 1139 1637 2101 2385 2556  
Percentage 45% 19% 18% 11% 7%  
Percentage of  
Aggregated data 

45% 64% 82% 93% 100%  
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Table 3. Statistical data of turbidity min and max (NTU) measured in 2013, 2014 and 2015 per 
month (National Office of Electricity and Drinking Water ONEE, 2015) 

 
Year : 2013 / Turbidity (NTU) 
Month  Bittit spring Ribaa spring 

Min Max Min Max 
January  3,70 18,95 10,00 50,00 
February  4,50 19,00 3,95 20,65 
March 4,95 98,40 4,50 136,66 
April 6,40 21,95 4,90 32,77 
May 3,93 6,30 3,80 5,30 
June 3,72 4,40 3,34 4,89 
July 3,30 4,33 2,92 3,62 
August 3,00 3,80 2,70 3,46 
September 3,10 4,64 2,68 4,15 
October 2,90 3,99 2,46 3,62 
November 2,70 7,44 2,90 10,00 
December 3,07 4,23 2,60 3,95 

Year : 2014     
Month Bittit spring Ribaa spring 

Min Max Min Max 
January  3,06 81,69 3,00 120,66 
February  6,48 128,00 5,93 78,90 
March 4,86 6,91 3,90 5,65 
April 4,30 4,90 3,30 4,19 
May 3,17 4,77 2,48 3,37 
June 3,00 3,86 2,60 2,87 
July 2,36 4,50 2,16 2,49 
August 1,74 4,20 1,88 2,28 
September 1,80 3,50 1,64 1,90 
October 1,89 4,20 1,67 11,64 
November 1,80 55,50 1,68 69,29 
December 6,57 197,50 5,06 235,89 

Year : 2015    
Month Bittit spring Ribaa spring 

Min Max Min Max 
January  5,09 63,10 3,96 61,59 
February  6,33 38,52 3,98 19,45 
March 4,97 6,27 3,26 4,64 
April 3,65 5,60 2,80 3,76 
May 3,50 5,23 2,68 3,06 
June 3,40 4,52 2,61 3,19 
July 2,80 4,75 2,40 3,60 
August 2,60 3,26 2,45 2,74 
September 2,70 128,45 2,35 86,63 
October 4,35 669,71 3,22 524,03 
November 6,76 17,18 3,99 13,19 
December 7,18 9,54 3,42 4,02 

 



Fig. 3. Operations expenses of the water treatment plant in 2013, 2014  and 2015 (National 
Office of Electricity 

Fig. 4. Percentage of chemicals expenses consumed by the wa ter treatment plant in 2013, 2014 
and 2015 (National Office of Electricity

 
2. METHODOLOGY 
 
Prediction of optimal coagulant dose from raw 
water characteristics is a nonlinear regression 
problem. The identification aims at modeling and 
parameter estimation. It consists of constructing 
a mathematical model that can describe the 
behavior "-Input-output" of the system [17]. The 
problem is to determine the model parameters 
from input and output data. The analysis of 
experimental data for different periods of the year 
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expenses of the water treatment plant in 2013, 2014  and 2015 (National 

Electricity and Drinking Water ONEE, 2015) 
 

 
Percentage of chemicals expenses consumed by the wa ter treatment plant in 2013, 2014 

National Office of Electricity  and Drinking Water ONEE, 2015)

Prediction of optimal coagulant dose from raw 
water characteristics is a nonlinear regression 
problem. The identification aims at modeling and 

of constructing 
a mathematical model that can describe the 

output" of the system [17]. The 
problem is to determine the model parameters 
from input and output data. The analysis of 
experimental data for different periods of the year 

in the water treatment plant allow obtain 
mathematical models describing the changes in 
dose of Alum based on the input parameters of 
the raw water using Statgraphics software.
 
The developed model will be based on the data 
available in the plant from 01/06/2014
31/12/2015 (495 data). The data validation, 
processing and modeling of the coagulant 
dosage rate are the main steps to construct the 
model as presented by Fig. 5. 
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Fig. 5. Structure of the model for the predicti

According to the data recorded in the water 
treatment plant, many models are identified and 
analyzed using Statgraphics software which 
indicates the relationship between the Aluminum 
doses measured and calculated by different 
models. Only eleven models from th
a complex one are exanimated regarding to the 
output (aluminum sulfate dose calculated). 
 
After elaboration of models, they are compared 
each one to the other. Two statistical tests are 
performed on models in order to choose the 
model fitted with the observed data. First, an 
ANOVA test is performed on models to 
determine if there is a significant difference 
between models and observed data. Finally, the 
Euclidian distance method is applied to models in 
order to choose the more representative 
observed data.  
 

3. RESULTS AND DISCUSSION
 
For this study, two groups of turbidity are 
identified: 
 

• Group 1: less turbid raw water (turbidity 
<=10 NTU). 

• Group 2: turbid raw water (turbidity> 10 
NTU and <= 20 NTU). 

Sensors

• Parameters: pH, 

Validation

• Compare the data and validation of the parameters

Processing

• Construction of the model

Modeling and 
reconstruction

• The model is used to predict the coagulant dose

• The dose calculated is compared to the dose determined by jar test

Reconstruction

• According to the data and the comparison between calculated and 
determined dose
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of the model for the predicti on of the coagulant dosage rate

 
rding to the data recorded in the water 

treatment plant, many models are identified and 
analyzed using Statgraphics software which 
indicates the relationship between the Aluminum 
doses measured and calculated by different 
models. Only eleven models from the simplest to 
a complex one are exanimated regarding to the 
output (aluminum sulfate dose calculated).  

After elaboration of models, they are compared 
Two statistical tests are 

performed on models in order to choose the 
with the observed data. First, an 

ANOVA test is performed on models to 
determine if there is a significant difference 
between models and observed data. Finally, the 
Euclidian distance method is applied to models in 
order to choose the more representative of the 

DISCUSSION 

For this study, two groups of turbidity are 

1: less turbid raw water (turbidity 

turbid raw water (turbidity> 10 

We considered turbidity (Turb), PH
temperature (Temp) as explanatory variables 
of the dose of Aluminum sulfate (ASD) 
variable behavior (dependent variable). After 
the validation and processing the available 
data, eleven models are built as presented in 
Table 4. 

 
3.1 Turbidity <= 10 NTU 
 

• ANOVA test: The Table 4 gives the results 
of the ANOVA test, there is no significant 
difference between the observed data and 
the calculated data of different models 
except the model 2. 

• The Euclidian distance test: The Euclidian 
distance is calculated between the model i 
and the data observed (Vobs). The results 
are exposed in Table 5: 

 
Fig. 6 shows that, except the model 2, others are 
much fitted to the measured values trend and 
can explain the evolution of the consumption of 
the aluminum sulfate in the water treatment 
plant. Moreover, the model 5 is much fitted to the 
measured values of the Alum doses as shown by 
Fig. 7. 

Parameters: pH, Temperature, Turbidity , conductivity...

Compare the data and validation of the parameters

Construction of the model

The model is used to predict the coagulant dose

The dose calculated is compared to the dose determined by jar test

According to the data and the comparison between calculated and 
determined dose
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e water treatment 
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Table 4. Models used to predict the aluminum sulfat e dose for turbidity less than 10 NTU 
 

Model ID  Model  Variance  Mean squares 
between groups  

Mean squares 
within group 

F F critic  

M1 ASD = a+ b*Turb^2 0,411683761 2,8836E-05 1,135265673 2,54002E-05 3,850888022 
M2 ASD  = a* Turb 11,18087015 370,0752732 6,519858869 56,76123988 3,850888022 
M3 ASD = a + B* PH+c*PH^2+d* Turb^2 0,459349673 0,000346606 1,159098629 0,000299031 3,850888022 
M4 ASD = a*PH+b*PH^2+c*Turb^2 0,41235782 0,000271781 1,135602703 0,000239327 3,850888022 
M5 ASD = a + b * PH+c * Temp + d * Turb + 

e * Temp^2 +f * Temp *PH+ g *Temp * 
Turb + h*PH^2 + i *PH* Turb + j* Turb^2 
+ k* Temp *PH* Turb 

0,598009211 
 
 
 

0,003622458 
 
 

1,228428398 0,002948856 3,850888022 

M6 ASD = a +b * Turb +c *PH 0,398624611 0,000260786 1,128736098 0,000231042 3,850888022 
M7 ASD = a* Turb  + b * PH 0,404036521 0,001562999 1,131442053 0,001381422 3,850888022 
M8 ASD = a + b * Turb 0,398033322 3,48569E-05 1,128440454 3,08895E-05 3,850888022 
M9 ASD = a* Temp + b* Turb + c* PH 0,451748045 0,0017627 1,155297815 0,001525754 3,850888022 
M10 ASD = a+ b*PH + c*Temp + d* Turb 0,443782468 0,00010845 1,151315027 9,41964E-05 3,850888022 
M11 ASD = b * PH+c * Temp + d * Turb + e * 

Temp^2 +f * Temp *PH+ g *Temp * Turb 
+ h*PH^2 + i *PH* Turb + j* Turb^2 + k* 
Temp *PH* Turb 

0,511660954 
 

0,001235877 
 
 

1,18525427 0,00104271 3,850888022 
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Fig. 6. Simulation of aluminum sulfate dose (mg/l) by different models and dose measured for 
turbidity less than 10 NTU 

 

 
 

Fig. 7. Simulation of aluminum sulfate dose (mg/l) by different model 5 and dose measured for 
turbidity less than 10 NTU 
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and the data observed (Vobs). The results 
are exposed in Table 7. 

 
Fig. 8 shows that the models are much fitted to 
the measured values of the aluminum sulfate 
consumption except the model 2. 
 
Table 5. The Euclidian distance calculated per 

models, turbidity less than 10 NTU 
 

Vobs/ Mi  Somme (Y obs - Y 
Mi)^2 

Vobs - M1 714,718 
Vobs - M2 5096,723 
Vobs - M3 691,737 
Vobs - M4 714,571 
Vobs - M5 617,589 
Vobs - M6 721,019 
Vobs - M7 721,807 
Vobs - M8 721,496 
Vobs - M9 699,537 
Vobs - M10 698,825 
Vobs - M11 663,757 

 
Fig. 9 shows the results of the calculated dose of 
the aluminum sulfate using the model 5. It is 
clear that the calculated dose is fitted to the 
measured dose. 
 
According to Euclidian distance test, for both 
levels of turbidity (less than 10 NTU and between 
10 and 20 NTU), model 5 is the most 
representative of observed data and it can be 
selected to predict the dose of the aluminum 
sulfate in the water treatment plant. 

Constructed model is used to predict the 
aluminum sulfate dose each hour in the water 
treatment plant. The parameters used in the 
model are continually changing. Thus, the Alum 
dose is changing from hour to other as shown in 
Figs. 10 and 11.   

 
Aluminum sulfate dose can be estimated 
according to data available in the treatment plant. 
Figs. 10-11 show that calculated dose of the 
aluminum sulfate is near of measured dose using 
jar test. Then, operator can use this model to 
control and monitor the aluminum sulfate dose in 
the water treatment plant. Also, the monitoring of 
the aluminum sulfate injection is possible by 
using this kind of model. 
 
The coagulant consumption optimization is 
possible and model can continually calculate   
the aluminum sulfate dose and this dose is 
predicted according to the change in the 
parameters of raw water. Instead to use a 
measured dose by jar test for twenty four hours 
minimum.  In the other hand, this approach is 
very interesting in improving the water quality 
because under dosing of coagulant can lead to 
poor quality drinking water while too much 
coagulant leads to many operating problems 
(less efficient filtration and sedimentation, pH), 
healthy problems and can increase the cost of 
treated water. 

 

 

 
  

Fig. 8. Simulation of aluminum sulfate dose (mg/l) by different models and dose measured for 
turbidity between 10 and 20 NTU 
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Table 6. Models used to predict the aluminum sulfat e dose for turbidity between 10 and 20 NTU 
 

Model ID Model Variance Mean squares 
between groups  

Mean squares 
within group 

F F critic 

M1 ASD = a+ b*Turb^2 0,234749871 2,122644009 3,264689885 0,650182432 3,932437831 
M2 ASD  = a* Turb 29,96359016 180,9770354 18,12911003 9,98267621 3,932437831 
M3 ASD = a + B* PH+c*PH^2+d* Turb^2 0,651787305 1,911098825 3,473208602 0,550240151 3,932437831 
M4 ASD = a*PH+b*PH^2+c*Turb^2 0,243033647 2,065336707 3,268831773 0,631827164 3,932437831 
M5 ASD = a + b * PH+c * Temp + d * 

Turb + e * Temp^2 +f * Temp *PH+ g 
*Temp * Turb + h*PH^2 + i *PH* 
Turb + j* Turb^2 + k* Temp *PH* 
Turb 

2,328561881 2,430658689 4,31159589 0,56374919 3,932437831 

M6 ASD = a +b * Turb +c *PH 0,244220963 2,061881321 3,269425431 0,630655559 3,932437831 
M7 ASD = a* Turb  + b * PH 0,005194236 142,5703974 3,149912067 45,26170712 3,932437831 
M8 ASD = a + b * Turb 0,235017994 2,122833224 3,264823946 0,650213689 3,932437831 
M9 ASD = a* Temp + b* Turb + c* PH 0,503452321 2,171104533 3,39904111 0,638740299 3,932437831 
M10 ASD = a+ b*PH + c*Temp + d* Turb 0,507533169 2,02223202 3,401081534 0,594584987 3,932437831 
M11 ASD = b * PH+c * Temp + d * Turb + 

e * Temp^2 +f * Temp *PH+ g *Temp 
* Turb + h*PH^2 + i *PH* Turb + j* 
Turb^2 + k* Temp *PH* Turb 

2,139660069 2,006669248 4,217144984 0,475835964 3,932437831 
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Fig. 9. Simulation of aluminum sulfate dose (mg/l) by the model 5 and dose measured for 
turbidity between 10 and 20 NTU 

 

 
 

Fig. 10. Comparison between the observed aluminum s ulfate dose (Alum measured) and the 
calculated dose (Alum calculated M5) by using the m odel 5 per hour for turbidity less than 10 

NTU 
 

Table 7. The Euclidian distance calculated per mode ls, turbidity between 10 and 20 NTU 
 

Vobs/ Mi  Somme (Y obs - Y Mi)^2  
Vobs - M1 298,372 
Vobs - M2 1734,448 
Vobs - M3 279,321 
Vobs - M4 298,020 
Vobs - M5 177,806 
Vobs - M6 299,416 
Vobs - M7 613,245 
Vobs - M8 299,856 
Vobs - M9 288,519 
Vobs - M10 286,634 
Vobs - M11 194,085 
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Fig. 11. Comparison between the observed dose of th e aluminum sulfate (Alum measured) and 
the calculated dose (Alum calculated M5) by using t he model 5 per hour for turbidity between 

10 and 20 NTU 
 

4. CONCLUSIONS 
 
In the aim of improving the water quality and 
reducing many operating problems. This paper 
has presented some preliminary results 
concerning the challenging task of controlling 
coagulant dosing rate at water treatment plant 
using non linear model. The model is related to 
turbidity, pH and temperature parameters. The 
aim of the model is to provide water treatment 
operators with a tool that enables prediction of 
aluminum sulfate dose using the data recorded in 
the plant. Application of the model can reduce 
the aluminum sulfate consumption by more than 
10% in the water treatment plant. However, the 
larger and more updated data base is, the more 
performant the model is.  
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