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ABSTRACT 
 

Flavans consist of the 2-phenylchroman structural unit found naturally in the plant kingdom. They 
are important compounds due to their various pharmacological properties, such as 
anticarcinogenic, anti-inflammatory, antioxidant, antimalarial, antiviral properties and 
chemopreventive potential for Helicobacter pylori peptic ulcers. Because the flavans are only 
minutely available from natural sources improved synthesis of flavans are desirable to obtain 
sufficient quantities for biological testing. Thus, this review article aims at describing the synthetic 
protocols which exist in the literature. From the surveyed literature 153 synthetic flavans, flavens, 
isoflavan, neoflavans and anthocyanins were reported.  
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ABBREVIATIONS 
 

BF3.Et2O = Boron trifluoride diethyl etherate 
NaBH4 = Sodium borohydride 
AcOH = Acetic acid 
LiAlH4 = Lithium aluminium hydride 
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Co12 = Human colon carcinoma cell line  
P-388 cell line = Murine lymphocytic leukemia cell line 
SGC-7901 = Gastric carcinoma,  
BEL-7402 = Hepatic carcinoma cell line 
HL-60 = Acute promyelocytic leukemia cell line 
MTT = 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide 
Pd(OAc)2 = Palladium (II) acetate 
Et3N = Triethyl amine 
CuI = Copper (I) iodide 
KOtBu = Potassium tert-butoxide 
DMF = Dimethylformamide 
NaBH3CN = Sodium cyanoborohydide 
PhBr = Bromobenzene 
BrCH2CH2Br = 1,2-Dibromoethane 
n-Bu4NHSO4 = Tetrabutylammonium hydrogen sulfate 
Pd(OH)2 = Palladium (II) hydroxide 
n-BuLi = n-Butyllithium 
DEAD = Diethyl diazenedicarboxylate 
rt = Room temperature 
AD-mix α = Asymmetric dihydroxylation mixture of reagents where phthalazine adduct contains 
dihydroquinine 
MeSO2NH2 = Methyl sulfonamide 
TBAF = Tetra-n-butylammonium fluoride 
EtC(OEt)3 = 1,1,1-Triethoxypropane 
PPTS = Pyridinium p-toluenesulfonate 
TEA = Triethyl amine 
PTC = Phase transfer catalyst 
Bi(OTf) =  Bismuth triflate or bismuth (III) trifluoromethanesulfonate 
TBDPSI = t-Butyldiphenylsilyl ether 
9-BBN = 9-Borabicyclo[3.3.1]nonane 
 

1. INTRODUCTION  
 
Flavan are an omnipresent 2-phenylchroman 
structural unit of the C6-C3-C6 type, 2-phenyl-3,4-
dihydro-2H-chromene nucleus found in 
flavonoids. They are natural products distributed 
in the plant kingdom with >17 000 natural flavans 
isolated [1]. The well-studied flavans are the 
flavan-3-ols of which their natural occurrences 
and biological activities were presented in a 2008 
review article [1]. Flavans are found in foods 
such as red wines, green teas, apples, pears, 
and cocoa products. They exhibit interesting 
biological and pharmacological activities [2a-h] 
and high degree of structural diversity depending 
on the type of constitutive units. 
 
The well-known flavans from green tea (Camellia 
sinensis) are (+)-catechin (1), (-)-epicatechin (2), 
(-)-epigallocatechin (3)  which possess various 
biological properties such as anticarcinogenic, 
anti-inflammatory, antioxidant and 
immunomodulatory properties, inhibition of bone 
resorption [3,4]. The green tea potent 
antioxidants are (-)-epicatechin gallate (4) and    
(-)-epigallocatechin gallate (5) [5]. The synthetic 

strategies towards catechins and related tea 
polyphenols were reviewed by Asakawa and co-
workers [6]. The lesser known important natural 
flavans are 7-hydroxy-3,4-methylenedioxyflavan 
(6) from Zephyranthes flava which is traditionally 
used to cure diabetes, ear and chest disorders 
and viral infections [7], 4,6-dichloroflavan (7) 
hinders rhinovirus replication in vitro [8], 
morusyunnansin E (8) exhibits potent inhibitory 
activity on mushroom tyrosinase [9], whereas 
(S)-equol (9) is believed to be a dietary 
phytoestrogen through binding to the estrogen 
receptor b (ERb) which is 13 times more potent 
than the unnatural (R)-isomer [10,11]. (S)-Equol 
is a metabolite of soy isoflavone, daidzein whose 
transformation was assisted by intestinal bacteria 
such as gut microflora [12,13], 3’-hydroxyequol 
has shown potential to prevent hormone-related 
cancer [14]. Vestitol (10) displays anti-
inflammatory, antimicrobial activities and has 
chemo-preventive potential for peptic ulcers in H-
Pylori infected individuals [15,16]. The fully 
substituted sideroxylonal B (11) from Eucalyptus 
sideroxylon exhibits antibacterial [17, 18] and 
antitumor properties [19]. 7-O-gallyltriceflavan 
(12) exhibits antiviral properties [20] while 
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Griffinord E (13) shows antimalarial activity [21]. 
The natural flavans 1-13 are shown in Figure 1. 
 

Flavans have attracted the attention of many 
synthetic chemists and a number of synthetic 
protocols have been developed for their 
synthesis due to their pharmacological 
importance. Thus this review describes the 
synthetic strategies reported for the synthesis of 
flavan and their analogues. This would assist to 
identify the most biologically important flavans 
and their simpler and efficient synthetic methods. 
Hence, enabling the future targeted synthesis of 
flavans. 
 

2. DISCUSSION 
 

2.1 Flavans  
 

Li and co-workers have described the synthesis 
of flavans (6 and 16) starting from a chalcone 
(14). The reduction of the chalcone using Raney 
nickel followed by the BF3.Et2O assisted 
cyclization in protic media formed the 
benzopyran ring of natural flavans as depicted in 
Scheme 1 [22]. Flavan (16) is an antifeedant 
chemical constituent of Stypandra grandis and 
Lycoris raliata [23]. Xue and co-workers have 
utilized a similar protocol to accomplish the 
synthesis of Dracaena cinnabari [24,25] isolated 
flavans (23-25) starting from salicylaldehyde (17) 

as shown in Scheme 2. The ,-unsaturated 
ketone function of the chalcone was reduced by 
H2/Pd, which usually reduces C=C double bonds 
[25]. 
 
Our group have also accomplished the synthesis 
of an array of flavans (30-34) [26,27]. Contrary to 
reduction methods using H2/Pd and H2/Raney 
Nickel in Scheme 1 and 2, Our group used 
NaBH4 to reduce chalcones [26] to the 
corresponding alcohols, which were cyclized into 
flavans (30-34) [27,28] as shown in Scheme 3. 
NaBH4 here reduced the C=C double bond, it is a 
reagent which is normally used for carbonyl 

group reductions. Recently, we have 
demonstrated the versatility of our methods by 
reducing 2-thienylchalcones (37) to alcohols (38), 
which were cyclized to flavans [2-(thiophen-2-
yl)chroman] bearing an electron rich thiophene 
ring (39, 40) [29] as depicted in Scheme 4. 
 

The reduction of o-hydroxychalcones with 
LiAlH4/AlCl3 affords trans-cinnamylphenol 
chromophore [30]. The cinnamylphenols were 
photocyclized to flavans via irraditions of the 
substrate in benzene inside a pyrex tube using a 
125W Hg lamp (Scheme 5) [31]. Alternatively, 
flavan 43 was synthesized in higher yields by the 
Clemmenson reduction of flavanone [30,31], 
Scheme 6. 
 

Zang and co-workers accomplished the 
synthesis of natural flavan racemates (52-54), via 
the Pd-C catalyzed hydrogenation / 
hydrogenolysis of flavones as described in 
Scheme 7. The esterification of the phenol with 
benzoic chloride followed by the Baker-
Venkataraman rearrangement affords 1,3-
diketones (49). To complete the synthesis the 
1,3-diketone forms the natural flavone (51) after 
treatment with acetic acid, and the subsequent 
hydrogenation/hydrogenolysis catalyzed by Pd-C 
yields the racemic flavans (52-54) [32]. The two 

flavans, 2(S)-7,8,3,4,5-pentamethoxyflavan 
(52) and 2(S)-5-hydroxy-7,8,3,4-
tertramethoxyflavan (53),  had been isolated from 
the roots of Muntingia calabura. These natural 
flavonoids exhibited cytotoxic activity against 
human colon carcinoma Co12 and murine 
lymphocytic leukemia P-388 cell lines [33]. The 
synthetic analogues were assessed for anti-
proliferative activity against human cancer cell 
lines, SGC-7901 gastric carcinoma, BEL-7402 
hepatic carcinoma, HeLa cervical carcinoma, and 
HL-60 acute promyelocytic leukemia, by MTT 
assay. The flavan (52) exhibited 1.6-5.7 more 
potency than cisplatin, while (53) showed 
moderate activities [32]. 

 

6   R= H, R1, R2 = OCH2O
16 R= Me, R1= OH, R2 = H

ORO R2
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RO R1
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OH

RO R1
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i ii and iii

14                                                                15

i) H2/Raney Ni (W-2), EtOH; ii) BF3.Et2O, 1,4-dioxane, 1.5h; iii) HCl, MeOH, reflux

Scheme 1: Li et al. synthesis of flavans
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Figure 1: Some naturally occuring bioactive flavans
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30 R = H          33 R = p-OMe
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32 R = m-OMe

Reagents and conditions: i) NaOH, EtOH, 2h, 60 oC; ii) NaBH4, MeOH, rt, 

0.5h; iii) AcOH, reflux.

                       Scheme 3: Mazimba et al. synthesis of flavans.
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Suchand and co-workers [34] reported a three 
step protocol for the sysnthesis of flavans. Firstly, 
the intermolecular [Pd] catalyzed C-C bond 
formation between 2-bromoiodobenzene (55) 
and allylic alcohols (56) affords dihydrochalcones 
(57). The dyhydrochalcones (57) were reduced 
to secondary alcohols (58) using NaBH4. The 
third step was the intramolecular [Pd]-catalyzed 
C–O bond formation which cyclizes the 2º 

alcohols (58) into the chroman ring (59-67). But, 
the [Pd] catalysis was inferior in yields (0-62%) 
[35,36] and formed back the ketone moiety of 
dihydrochalcones (57) as the minor product (9-
65%). Whereas, the [Cu]-catalyzed C-O bond 

formations were found to exclusively form flavans 
(59-67) in good yield (68-85%) as shown in 
Scheme 8 [34]. 
 
The Suchand and co-workers protocol was 
extended to the synthesis of flavans substituted 
at C-2 (69-76) as described in Scheme 9. The 
strategy involved the reaction of 
dihydrochalcones (57) and Grignard reagent [34]. 
Ramulu and co-workers showed the versatility of 
the [Pd] and [Cu]-catalysed construction of C-C 
and C-O bonds in the synthesis of flavans by 
preparing flavans (77-85) [37] shown in Fig. 2.  
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                 Scheme 4: Mazimba's synthesis of 2-(thiophen-2-yl)chroman
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CH3COOC2H5, rt, 12h; v) H2, Pd-C, CH3OH, rt, 24 h.

Scheme 7: Zhang et al. synthesis of flavans.
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A multi-component reactions between 
phloroglucinol (86), styrene (87) and 
formaldehyde (89) in the presence of a 
heterogeneous solid catalyst directly furnished 
flavans (89; Scheme 10) shown in Fig. 3. 
Besides silica-HClO4, other catalyst that 
efficiently assisted the reaction were silica-FeCl3, 
HClO4 and Amberlyst-IR-50 [38]. 
 

Flavens 102-104 were synthesized by the 
reduction of flavylium perchlorate (101) using 

magnesium bromide, while reduction using 
sodium borohydride or sodium cyanoborohydride 
afforded flavens 105-109 [39]. Further reactions 
of flavens with sodium cyanoborohydride 
afforded the corresponding flavans 110-114 
shown in Scheme 11. These reactions were 
successful only for flavens bearing electron 
donating groups in ring B at positions C-2’ and C-
4’ [39]. The ring B electron donating groups 
permit the resonance stabilization of the positive 
charge placed at C-2 before being quenched by 



 
 
 
 

Mazimba and Keroletswe; IRJPAC, 8(3): 112-146, 2015; Article no.IRJPAC.2015.079 
 
 

 
118 

 

a hydride ion. The reaction of flav-2-ens of type 
115 with alcohols in the presence of Lewis acid 
yields 2-alkoxyflavans 118-120, which were 
subsequently reduced to flavans (121-123) using 
NaBH3CN in Scheme 12 [39]. 
 
5,7-Dihydroxy-4´-methoxyflavan (130) was 
synthesized in a total of seven steps from 3,5- 
bis(benzyloxy)phenol (124) by Machado and 
coworkers [40]. O-allylation of phenol 124 using 
allyl bromide yields an allylic ether 125, which 
under thermal conditions undergoes a Claisen 
rearrangement to furnish a phenol (126). 
Esterification of 126 using 1,2-dibromoethane in 

K2CO3/acetone with subsequent base elimination 
under phase transfer catalysis furnished diene 
(127). 4H-chromene ring (128) was obtained 
from diene 127 through ring closure assisted by 
the Grubbs-2 catalyst. Heck reaction of 
compound 128 with 2-MeOPh-N2BF4 followed by 
ring closing metathesis furnished flav-3-en (129). 
Palladium-catalyzed hydrogenation-
hydrogenolysis afforded 5,7-dihydroxy-4´-
methoxyflavan (130) (Scheme 13) [40]. Flavan 
130 has been isolated from Faramea guianensis 
and shows significant in vitro leishmanicidal 
activity [41]. 
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Scheme 8: [Pd] catalyzed C-C and [Cu]-catalysed C-O bond formations in the synthesisis of flavans

Reagents and conditions: i) 3 mol % Pd(OAc)2, Et3N, MeCN, 80 oC; ii) NaBH4, MeOH, rt; iii) 20 mol% CuI, 2,2-
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Hodgetts and co-workers have reported a 
synthetic strategy towards flavans in which the 
intermolecular and intramolecular Mitsunobu 
reactions were the keys steps. The 
intermolecular Mitsunobu reaction between 2-
bromophenol (131) and (R)-3-chloro-1-phenyl-1-
propanol (132) under standard inversion 
conditions afforded (S)-phenyl ether (133). 
Cyclization was accomplished in the presence of 
n-butyllithium [42] to furnish enantiomerically 
pure flavans as shown in Scheme 22. 
Tephrowatsin E (138) is a natural flavan isolated 
from Tephrosia watsoniana [43]. 
 
The one pot cyclization and in situ 
functionalization of the Mitsunobou reaction ether 
product was probed. The first addition of n-
butylithium was selective towards the ortho-
bromo metal exchange which leads to the 
formation of the flavan ring affording 6-bromo-2-

phenylchroman. Further addition of the 
organolithium reagent forms a chromanyllithium 
by the second halogen-metal exchange. 
Quenching of the electrophile accomplishes the 
one pot synthesis of flavans (140-144) as 
described in Scheme 15 [42]. 
 
The synthesis of enantiomerically pure 4’,6-
dichloroflavan (BW683C) (7) was achieved 
starting from the asymmetric reduction of suitable 
prochiral ketone, 3,4-dichloropropiophenone 
(145) with (R)-oxazaborolidine and borane [42, 
44] as described in Scheme 16.  
 

2.2 C2, C3-substituted Flavan Derivatives 
 
Deodhar and co-workers [45] described the 
synthesis of 4-arylflavans (153) from flavanone 
(151) which was derived via the condensation 
reaction of resacetophenone (148) and 4-
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hydroxybenzaldehyde (149). The acetylated 
flavanone (151) furnished 7,4-diacetoxyflavan-4-
ol (152) after the palladium-catalyzed 
hydrogenation. The OH-group was substituted 
with an aryl group in the presence of BF3.OEt2 
yielding equal mixtures of cis and trans-flavans 
(153) after KOH hydrolysis of the acetyl group 
[45]. 
 
The condensation reaction of phenols and 
secondary alcohols in the presence of BF3.OEt2 

to form ethers [46] was applied to the synthesis 
of 4-aryloxyflavans. The synthesis of 4-
aryloxyflavans (155-161) was accomplished by 
reactions of phenol with flavan-4-ols (154) 
catalyzed by boron trifluoride in ether, Scheme 
25 [47,48]. p-Cresol resulted in the highest yield 
(70%) for 4-aryloxyflavans. Catalysis using 
alcoholic hydrogen chloride or toluene-p-
sulphonic acid yields 4-arylflavans (162-164) 

[47,49]. The thermal decomposition of flavan-4-
yl phenyl carbonates (165) of flavan-4-ol yielded 

4-aryloxyflavans (155-161) [50,47] without 
producing 4-arylflavans (Scheme 18). The 
disadvantage for these synthetic methods were 
concomitant formation of 4-aryloxyflavans and 
4-arylflavans, which needed separation, and 
failure to work with 7-methoxy or 3-hydroxy 
substituted flavan-4-ols.  
 
Thus, a synthetic method based on the opening 
of flav-3-ene epoxides (166) with phenols and 
phenolates ions was reported. The phenols ring 
opening reaction affords 2,3-cis-3,4-cis- (167) 
and 2,3-trans-3,4-cis-(169) 4-aryloxyflavan-3-ols 
while the phenolate ions yields 2,3-cis-3,4-trans-
(168) and 2,3-trans-3,4-trans-(171) 4-
aryloxyflavan-3-ols as shown in Scheme 19 [48]. 
The phenols cis-openning of the epoxide ring 
occurs by the ion-pair mechanism [51] to 
exclusively give 3,4-cis-stereochemistry, while 
the phenolate reaction is an SN2 mechanism that 
leads to 3,4-trans stereochemistry.  
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Scheme 12: Flavan synthesis from flavens
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When Zhang and co-workers attempted to 
reduce the orthogonally protected chalcones 
(178) to the olefin, cinnamylphenol derivative 
(182) the formation of flavene (180) was 
observed [52]. Apparantly the flavene was 
formed due to the pre-mature quenching of the 
reaction with acid, since the reduction of the 
carbonyl group with NaBH4/CeCl3 rapidly formed 
the alcohol intermediate (179), while the 
conversion to the olefin was a much slower step. 
The intermediate E-configuration of the double 
bond favors the acid catalyzed intramolecular 
cyclization to form the flavene (180), while the 
olefin (182) was formed after prolonged stirring. 
The olefin (182) was transformed into flavan-3-ol 
(187) and flavan-3-one (188) as described in 

Scheme 20 [52]. Ten examples of compound 
type (187) and (188) were reported, while flavan-
3-ol (187) is also a derivative of (-)-epicatechin 
(2). The racemic diol (181) was accomplished by 
the dihydroxylation of flavene (180) using a non-
asymmetric dihydroxylation protocol [52, 53]. 
 
The tetramethyl ether of melacacidin was 
synthesized by the hydrogenation of 7,8,3,4-
tetramethylflavonol (189) over Raney nickel to 
furnish tetra-O-methylmelacacidin (190) shown in 
Scheme 21 [54]. (2R,3R,4R)-Melacacidin is a 
natural flavan-3,4-diol obtained from Acacia 
species and has shown to have moderate 
allergenic properties [55]. 
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                                         Scheme 13: Machado et al. synthesis of F. guianensis flavan
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Scheme 15: Mitsunobu reaction one pot cyclization and fuctionalization into flavans
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Scheme 18: Synthesis of 4-arylflavans and 4-aryloxyflavans
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Scheme 19: Synthesis of 4-aryloxyflavans from 2,3-cis and 2,3-trans-flav-3-ene
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The Clark-Lewis group reported the synthesis of 
four sets of racemates (193, 197, 199-200) of 
flavan-3,4-diols in Scheme 22. The cis-cis 
racemate (193) was obtained from flavanol 192 
by Raney-Ni hydrogenation [56,57]. The 
reduction of 2,3-transflavandiols (198) with 
LiAlH4 furnished 2,3-trans, 3,4-cis-racemate 
(199) and 2,3-trans, 3,4-trans-racemate (200). 
The least accessible leucoanthocyanidins 
racemic form was synthesized by the reduction 
of the 3-bromoflavanone (195) into 3-
bromoflavan-4-ol (196) with NaBH4. The 
treatment of 3-bromoflavan-4-ol (196) with 
potassium acetate in acetic anhydride afforded 
the 2,3-cis-3,4-trans racemate (197) as 
described in Scheme 22 [58]. The acetic 
anhydride was used for the acetylation of the 
racemate obtained with KOAc-EtOH which was 
an oil, while its diacetate was a solid. The 1H 

NMR was used to assign the configurations and 
the heterocyclic ring was found to adopt a half-
chair conformation. The coupling constants were 
distinctive for 2H, 3H and 4H in flavan-3-diols as 
cis [J2ax-3eq=0.9-1 Hz and J3eq-4ax=3.3-3.9 Hz] and 
trans [J2ax-3ax=7.1-10 Hz, J3ax-4ax=5.8-7.5 Hz and 
J3eq-4eq=0-1 Hz] [56,58]. 
 
Machado and coworkers synthesized 4-
methoxyflav-3-en (205) from phenol (201) in a 
total of five steps [40,59]. Phenol (201) (R = H) 
was reacted with allyl bromide in the presence of 
K2CO3 and acetone followed by thermal Claisen 
rearrangement to compound 202. O-allylation of 
compound (202) with tetravinyltin in acetonitrile, 
catalyzed by copper (II) acetate furnished allyl 
ether (203). Ring closure metathesis using 
Grubbs-2 catalyst afforded chromene (204) and 
the Heck-Matsuda arylation with Ar-N2BF4 using 
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palladium (II) acetate catalyst furnished 4-
methoxyflav-3-en (205) as depicted in Scheme 
23. Pd2(dba)3dba equally worked as a catalyst 
but at slightly elevated temperature of 65ºC to 
furnish 4-methoxyflav-3-en (205) in 54% [59,60]. 
 
Mewett and coworkers [61] synthesized flavan-3-
ols, (211, 212), starting from the reaction of 
acetophenone (206) and benzaldehyde (207) 
(Scheme 24). The first key step was the 
reduction of the chalcone with NaBH4 to afford 
(E)-1,3-diarylpropene (209). The reported 
NaBH4-H2O/H

+
 reduction system was selective 

towards C=O reduction only, similar to 
LiAlH4/AlCl3-THF [30], but was in utter-contrast to 
reductions using H2/Pd-C [25] and NaBH4-MeOH 
systems [26,29,34] which reduced both the C=C 
and C=O bonds. After the MOM protection of 
free OH, asymmetric dihydroxylation of the (E)-
1,3-diarylpropene (209) double bond using AD-
mix-β afforded (1R,2R)-syn-diol (210) (AD-mix-α 
equally works to give (1S,2S)- syn-diol. The 
deprotection and cyclisation [62] furnished a 
mixture of cis- and trans-flavan-3-ols, (211-212), 
in a ratio of 1:3 respectively [61]. In chalcone 
reductive protocols the hydroxyl group is derived 
from the C=O reduction [29], and cyclization 
afford flavans while in this protocol the cyclization 
step yields C-3 hydroxy substituted flavans 
(flavan-3-ol), due to the presence of 1,2-diols 
moiety.  
 
The dimethyldioxirane (DMD), oxidation of 
flavan-4-ol and flavans (213) derivatives affords 
the corresponding C-2 hydroxy derivatives (213, 
215) in good yields [63,64], Scheme 25. 
Treatment of compound (214) with silica gel 
eliminates the acetic acid to give flavene (216). 
The flavane with the 4-equatorial acetoxy is more 
stable. On the other hand the dehydration of 
flavan (215) requires POCl3 at 50ºC. The 
differences have been ascribed to the fact that 
the presence of the axial acetoxy group in 
hydroxylated intermediate (218) weakens the 
hydrogen bonding between the C-2 hydroxy 
group and the benzyl ethereal oxygen, which 
favors dehydration [63,65]. The flavylium ion, 
anthocyanin (217) was obtained after the 
treatment of flavene (216) with HCl, whereas 
mild oxidants were required for transformations 
of flavene (219 and 220) [63]. 
 
The reaction of nucleophiles (alcohols or amines) 
with flavan-4-ols or flavan-4-halides affords the 
corresponding 4-substituted flavans. A series of 
4-halogenoflavans (223-227) were obtained via 
SN

2
 substitution reaction of flavan-4-ol (222) 

with phosphorous halide, Scheme 26. The 4-
halogenoflavans were reported to have a 2,4-
trans configuration based on 

1
H-NMR 

interpretations, J2,3 =13-14 Hz and J3,4 = 6-6.5 
Hz. An attempt to recrystallize the 4-
chloroflavan (223) from methanol led to the 
substitution of the halide by the MeO- ion (229). 

The action of arylphenols on 4-halogenoflavan 
gave the desired product albeit at lower yields 
(20-30%) and inversion of configuration. 
Improved yields 40-50% for the 4-arylflavans 
(230-235) were accomplished using 
stoicheiometric amount of a phase transfer 
catalyst, PTC (benzyltri-n-butylammonium 
bromide) as shown in Scheme 27. Flavan-4-yl 
sulphides (238, 239) were synthesized by the 

action of thiophenolate nucleophile on 4-
chloroflavan (223) (Scheme 28), while 4-
aminoflavans (240-244) were synthesized using 
amino group nucleophiles [66-69] as described in 
Scheme 29. 
 
Flavylium salts were reduced to flavenes in 
various ways. Lithium aluminium hydride is 
generally used for the preparation of flav-2-ens 
unsubstituted at C2’ and C3 (246), and flav-3-ens 
substituted at C3 and C2’ (247-248; Scheme 30) 
[70]. Mixture of flav-2-ens (249) and flav-3-enes 
(250) were obtained for flavylium ions bearing 
electron donating groups at C-2’, which render 
LiAlH4 a less useful reducing agent [71].  
 
The catalytic reduction of 3,5,7,2,4-
pentamethoxyflavylium chloride (251) with Pd-
BaSO4 furnished 3,5,7,2,4-pentamethoxyflavan 
(252; Scheme 31) [72], which is a derivative of 

cyanomaclurin (3,5,7,4-tetrahydoxyflavan) [73]. 
Cyanomaclurin (253) is a constituent of 
Atorcapus species and exhibit antibacterial and 
tyrosinase inhibitor activity [74,75]. 
 
An efficient bromination of flav-2-ens (254) with 
N-bromosuccinimide in methanol occurred more 
rapidly than substitution into the aromatic moiety 
to give 2,3-cis-2methoxy-3-bromoflavans (255). 
The reduction of flavans (255) with tri-n-butylin 
hydride removed the bromine atom to afford 2-
methoxyflavans (257-259), while the removal of 
the methoxy group was achieved by using 
LiAlCl4 to yield 3-bromoflavane (256). The 3-
bromoflavanes (256) gave the corresponding 2-
methoxyflavanes (257-259) after treatment with 
silver nitrate in methanol as shown in Scheme 32 
[39,76]. 
 

Gharpute and co-workers [77] reported a mild 
protocol for the synthesis of flavans (263-266) 
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using in situ generated quinone methide (o-QMs) 
(262), which undergoes a [4+2] cycloaddition 
reaction with styrene (261) and non-aryl 
vinylogous systems such as acrylates as shown 
in Scheme 33 and Figure 4. The o-QMs were 
generated from o-hydroxy bisbenzylic alcohols 
(260) using (±)-binolphosphoric acid (BPA) and 

the reaction required a 1:1 equivalent of styrene 
(261) for an efficient hetero Diels-Alder reaction 
[77-79]. The BPA catalyzed reaction had a 
diastereoselectivity (3:1) favouring the cis 
isomer, while Bi(OTf)3 catalyst produced a 
racemic mixture (1:1) though at the same yields 
[77]. 
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Scheme 21: Synthesis of melacacidin tetramethyl ether
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Gharpure and co-workers applied the hetero 
Diels-Alder reaction of o-quinone with styrene to 
the synthesis of Myristinins A and B/C [77].  
Myristinins A (279) and B/C are natural 
neoflavans isolated from Myristica cinnamomea, 
Knema elegans and Horsfieldia amygdaline 
[80,81] showing anti-inflammatory, antifungal and 

are both potent DNA-damaging agent and DNA 
polymerase  inhibitors [80-83]. The total 
synthesis of Myristinins A and B/C reported by 
Gharpure and co-workers in Scheme 34 [77] is 
shorter than the lengthy strategy reported by 
Hecht and co-workers [80,81]. 
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The strategy begun by deriving the o-QM 
precursor (272), iodoalcohol (271) from the 
addition of diiodide to an aldehyde (270). The o-
QM undergoes a [4+2] cycloaddition with styrene 
to furnish arylflavan in good diastereoselectivity 
(cis:trans; 9:1). The arylflavan stabilized by 
styrene dienophile reacted with ethyl vinyl ether 
(275) under Heck reaction conditions to afford 
ketone 276. Ketone 276 was reported to be 
difficult in forming an enolate ion due to steric 
hindrance, but repeat generation of ketone 276 
enolate ions using t-BuOK and alkylation with n-
decyl iodide accomplished the synthesis of 
Myristinin A (279) [79] as depicted in Scheme 34. 
 

Suchand and co-workers presented the 
neoflavan synthesis based on the intramolecular 

[Cu]-catalyzed C–O bond formation from the 
precursor diphenylalcohols. The synthesis starts 
with the Lewis acid promoted Friedel-Crafts 
Michael addition of electron rich phenols (281) 
onto the double bond of the cinnamate ester 
(280) to furnish a -diaryl ester (282). 
Preferential electrophilic aromatic bromination of 
the electron rich aromatic ring at the -diaryl 
ester, followed by reduction of the ester furnished 
the required precursor alcohols (284). The 
cyclization using intramolecular [Cu]-catalyzed 
C–O bond formation was successful and 
furnished neoflavans (285) shown in Scheme 35 
and Fig. 5 in good yields [84]. 
 



 
 
 
 

Mazimba and Keroletswe; IRJPAC, 8(3): 112-146, 2015; Article no.IRJPAC.2015.079 
 
 

 
130 

 

O

R1

R2

X

MeOH
recrystallization

O

R1

R2

OMe

228

229

O

R1

R2

R3

         R1       R2      R3

230   H        H        H
231   H        H        Me
232   OMe   H        H
233   OMe   H       Me
234   OMe   H        Ac
235 Ar-R3 = 4-methoxy(2-naphtyl)

PTC

DCM, 39-52 %

Scheme 27: Synthesis of 2,4-cis-4- arylflavans
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Scheme 30: Reduction of flavylium ions with LiAlH4
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Scheme 31: Synthesis of pentamethoxyflavan  
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Figure 4: Flavane derivatives reported by Gharpure and co-workers
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The synthesis of [3.3.1]-bicyclic ketals was 
accomplished by the Pd(II)-catalyzed asymmetric 
1,4-conjugate addition of organoboron reagent 
[85], 2-hydroxyphenylboronic acid (294) to 
chalcones (293). The 2-hydroxyphenyl palladium 
metal complex (295) was generated in situ via 
the transmetalation of 2-hydroxyphenylboronic 
acid (294), with the chiral Pd(ii)-complex 
[generated from Pd(PhCN)2Cl2 and ligand (R)-
3,5-xyly-BINAP, L3]. The palladium complex 295 
act as a bis(nucleophile) in the construction of 
the chiral flavan heteroannular ketals shown in 
Scheme 36 [86]. The products were reported in 
higher enantio-selectivities and the substituent 
on the chalcones only affected the yields. 
Besides the flavanone reductions utilizing 
inorganic catalyst reductions, the application of 
biocatalysts has also been reported. Three day 
biotransformation of (S)-flavanone (317) with 
yeast of the genus Candida wiswanathi KCh 120 
enabled the enantioselective reduction of the 
ketone functional group to give (2S,4S)-cis-
flavan-4-ol (38%, 95%) (318) and (2R,4S)-trans-
flavan-4-ol (51%, 92% ee) (319) as shown in 
Scheme 37. The reductions by the yeast species 

were (S)-one selective. The (R)-flavanone was 
ineffectively reduced by Saccharomyces 
brasiliensis KCh 905 to afford (2S,4R)-trans-
flavan-4-ol (12%, 91% ee) and (2R,4R)-cis-
flavan-4-ol (7%, 22% ee) [87]. 
 

2.3 Isoflavans 
 
Deodhar and co-workers [45] used the procedure 
for the synthesis of flavans (152) (Scheme 17) to 
the construction of isoflavans 325 from 
isoflavanol (323) [88,89] as described in Scheme 
38. Trans-4-aryl/heteroarylisoflavans were 
synthesized in good to excellent yields and 
bearing various substituents [45]. 
 
Takashima and co-workers outlined the 
synthesis of natural flavans, (S)-equol, (R)-
sativan and (R)-vestitol using allylic substitution 
[90]. The (S)-equol synthesis was offset by the 
Wittig reaction between the phosphonium salt 
derived from arylaldehyde and the protected 2-
hydroxypropanal (326). The aldehyde was 
synthesized from ethyl-(S)-lactate (329). The 
Wittig product was the cis-olefin (332), which 
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after deprotection and esterification afforded the 
key intermediate, picolinate (333) in 94% ee 
(cis:trans: 14:1). The allylic substitution of (S)-
picolinate with the copper reagent produced the 
anti SN2 trans olefin product which when 
subjected to OsO4-catalyzed dihydroxylation 
gave a polar diol of 335. The cleavage of the diol 
by NaIO4 and in situ reduction of the resulting 
aldehyde with NaBH4 affords an alcohol, which 
was brominated to obtain compound 335. The 
cyclization of 335 yields (S)-equol (9) in 91% ee 
after demethylations using BBr3 [90-92] as 
depicted in Scheme 39. The synthesis of (S)-
equol was previously reported in a similar 
manner from (S)-picolinate with yields of 74% 
and 99% ee [93]. The first total synthesis of (S)-
equol was reported by Heemstra and co-workers 
in an overall yield of 9.8%. Their six step protocol 
key step was the Evans alkylation [94] to form 
the stereocenter and an intramolecular 
etherification to generate the benzopyran ring, 
which was deprotected to furnish (S)-equol as 
shown in Scheme 41 [95]. 
 
For the synthesis of (R)-sativan, the intermediate 
(R)-picolinate was synthesized from ethyl-(R)-
lactate using similar reactions described in 

Scheme 38. The synthetic protocol for (R)-
sativan differs with that of (S)-equol at the 
deprotection and cyclization steps. The 
protecting benyl group was removed by H2-Pd/C 
catalyst and cyclization with Mitsunobu reagent, 
PPh3 and DEAD constructed the benzopyran ring 
of (R)-sativan (344) as shown in Scheme 41 
[90,96-98]. 
 
The synthetic strategy towards (R)-vestitol (10) 
was similar to that of (R)-sativan (344), but the 
copper reagent utilized was derived from the 
Grignard reagent 2-MOMO-4-MeOC6H3MgBr. 
The final step was the deprotection of the MOM 
group with HCl in MeOH (Scheme 42) to furnish 
(R)-vestitol in 90% ee [90,92,99]. 
 
Gharpure and coworkers reported the synthesis 
of isoflavans using in situ generated o-quinone 
methides (o-QM) as heterodiene in the [4+2] 
Diels-Alder cycloaddition reaction shown in 
Scheme 43. The required o-
acetotoxymethylphenol (347) was prepared from 
the salicyladehyde derivative (348) reduction, 
while the arylenol ethers (348) were synthesized 
via Wittig reaction on an arylaldehyde (347). 
  

 

Reagents and conditions: i) n-BuLi, THF, -78 oC; ii) BPA, DCM; iii) Pd(OAc)2, PPh3, Et3N, DMF, 110 oC; iv) HCl; 

v) t-BuOK, THF, 0 oC-rt.
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Figure 5 Neoflavans reported by Suchand and co-workers
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                     Scheme 35: [Cu]-catalyzed C-O bond formation in the synthesis of neoflavans

 
 
 

 
 



 
 
 
 

Mazimba and Keroletswe; IRJPAC, 8(3): 112-146, 2015; Article no.IRJPAC.2015.079 
 
 

 
135 

 

OH

R1

R2

R3
R4

O

B(OH)2

OH

PdL*

OH

Pd(PhCN)2Cl2
L3, AgBF4,

toluene, rt.

toluene, rt.
20-93% 
90-98 %ee O

R1

R2

R3

R4

O

        R1          R2       R3        R4

296  MeO      H          H        Ph
297  H           MeO     H        Ph 
298  H           H          MeO   Ph
299  H           H          OH      Ph
300  H           H          Me      Ph
301  H           H          F         Ph
302  H           H         Cl         Ph
303  H           H         Br         Ph
304  H           H         NO2      Ph

        R1          R2    R3    R4

305  MeO      H      H     2-MePh
306  MeO      H      H     2-ClPh 
307  MeO      H      H     2-BrPh
308  MeO      H      H     3-ClPh
309  MeO      H      H     4-ClPh
310  MeO      H      H     4-FPh
311  MeO      H      H     4-CF4 Ph
312  MeO      H      H     4-MePh
313  MeO      H      H     4-MeOPh
314  MeO      H      H     3,4-diMePh
315  H           H      H      Ph
316  H           H      H      C4H4S

293

294                                                  295

Scheme 36: Synthesis of flavan heteroannular ketals
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Scheme 37: Biotransformations of flavanone to flavan-4-ols  
 

The Diels Alder reaction of diene, o-quinone 
methides (o-QM; 351) generated from o-
acetotoxymethylphenol and the dienophile, 
arylenol ethers (348) afforded diastereomeric 
mixture of isoflavan acetals (352). Reductive 
elimination of the methoxy group afforded 
isoflavans (353) in poor to excellent yields as 
shown in Scheme 43 [100]. 

 

Natural isoflavans were prepared by de-
protecting compounds (353-364 in Scheme 43) 
using H2/Pd-C in ethylacetate. Compound 363 
and 364 furnished equol (340) and vestitol (10) in 
83 and 87 % yield respectively. Compound 362 
methoxy groups were removed using pyridinium 
hydrochloride to give 3’-hydroxyequol (9) in 65% 
yield [100]. 

Versteeg and co-workers reported the synthesis 
of isoflavans using the Evans chiral auxilliary 
alkylation. The acylation of the trimethylsilyl 
ethers of chiral auxiliary, (4S,5R)-(+)- and 
(4R,5S)-(-)-imidazolidin-2-ones (365) with 
phenylacetyl chlorides (367) affords N-acyl 
imidazolidinones (368). The LICA (lithium 
isopropylcyclohexylamide) generated enolate ion 
of N-acyl imidazolidinones were alkylated in good 
yields giving only one diastereoisomer (369; de 
84-90%). The reduction of the alkylation products 
into arylpropanols followed by the cyclization 
afford isoflavans (371). The cyclization after the 
activation of the hydroxyl group gives lower 
yields (46-60%) when NaH was used, but higher 
yields (73-95%) were observed when 
Mitsunobou conditions were employed [101,97] 
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as shown in Scheme 44. The reports indicated 
that the alkylation step had preferential formation 
of the Z-enolate. Thus, the alkylation was 
directed to the face of the enolate opposite the 
phenyl moiety on the chiral auxiliary and the 
configuration of the isoflavans were stated to be 
3R or 3S [94,101]. The C-3 configuration of the 
isoflavans were determined by that of chiral 
auxiliary. (4S,5R)-(+)-imidazolidin-2-ones affords 
the 3S-isoflavans while the  (4R,5S)-(-)-
imidazolidin-2-ones yields the 3R isomers 
[101,97]. 

 

Glabridin (386) is a natural isoflavan from the 
licorice of Glycyrrhiza glabra. Glabridin has been 
found to be responsible for the licorice 

antioxidative effect and also inhibit the 
tyrosinase-dependent melanin biosynthesis 
[102,103]. The synthetic strategy towards (±)-
Glabridin was outlined by Yoo and Nahm [104] 
as described in Scheme 45. 

 

The heartwood of Dalbergia nitidula contains the 
natural isoflavan oligomer, (3S,4S)-3,4-trans-4-
[(3S)-6',7-dihydroxy-4'-methoxyisoflavan-3'-yl]-
2',7-dihydroxy-4-methoxy-isoflavan (388). The 
synthesis of the [4,3’]-bi-isoflavan was 
accomplished by the condensation of (+)-vestitol 
(10) with (+)-medicarpin (387) as the elctrophile. 
The pterocarpan (389) reacted with phenolic 
electrophiles (390-391) to furnish 4-arylisoflavan 
and dimers shown in Scheme 46 and 47 [105]. 
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Scheme 39: Synthesis of (S)-equol
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Scheme 41: Synthesis of (R)-sativan the (R)-picolinate

BnO

OBn
OCOPy

i) 2,4-(MeO)2C6H3MgBr
   CuBr•Me2S 
  –60 to –50 °C, 
ii)OsO4, NMO, 
   acetone, H2O

341                                                                                                          342

iii) NaIO4, MeOH, H2O
iv) NaBH4, 73 %

BnO

OBn

OH

OMe

OMe

HO

OH

OH

OMe

OMe

HO

O

OMe

OMe

H2, Pd/C
MeOH

i) DEAD, PPh3, THF

ii) LiOH, MeOH, 80oC

     77 %

344                                                                                  343

92%

 

Scheme 42: Synthesis of (R)-vestitol  the (R)-picolinate
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Reagents, conditions: i) (CH3)2C=CHCHO, MgSO4/py; ii) BzCl/CH2Cl2, TEA, 0 °C; iii) LDA, THF, -78 °C; iv) 
LiBH4, THF, reflux; v) PPh3, DEAD, THF; vi) TsOH, i-PrOH, reflux.
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Scheme 47: Synthesis of isoflavan oligormers from reaction of a pterocarpan with phenolics

391                                                 389

MeO
OH

OMe

O

O

+

EtOH, HCl

394 23 %

HO OH

OH

MeO
OH

OMe

O

HO OH

OH

MeO
OH

OMe

O

HO OH

OH

50 oC, 12 h.

OMe

HO

MeO

O

392 73.6 % 393 26.4 %

MeO
OH

OMe

O

OH
OH

MeO

O

EtOH, HCl

40 oC, 21 h.

MeO
OH

OMe

O

OH

O

MeO OH

MeO
OH

OMe

O

OH

O

MeO OH

OMe
OH

MeO

O

396 29 %                                                                   397 25 %

+

390

 

3. CONCLUSION 
 
As mentioned earlier on, flavans are important 
compounds containing the 2-phenylchroman 
moiety. They have been reported to possess 
anticancer, anti-inflammatory, antioxidants and 

antimicrobial properties. As such, numerous 
efforts have been directed towards their 
syntheses. Among the many methods reported, 
the common methods for their preparations 
include; (i). Reduction of flavanone and flavone 
with Raney-Ni, NaBH4 or H2/Pd (ii) cyclisation of 
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2-(3-hydroxy-3-phenylpropyl)phenol derived from 
chalcones via reduction using NaBH4 or H2/Pd 
(iii). Reduction of anthocyanins with NaBH3CN in 
AcOH/Ac2O or with MgBr/PhBr followed by 
NaBH3CN, (iv). Reactions of flav-2-enes with 
alcohols in Lewis acid with subsequent reduction 
with NaBH3CN, (v). Condensation of phenols 
with secondary alcohols in BF3.OEt2 to 4α-
aryloxyflavans and (vi). bromination of flav-2-
enes with N-bromosuccinimide. Neoflavans were 
synthesized by the intramolecular [Cu]-catalyzed 
cyclization of 3-(2-bromophenyl)-3-phenylpropan-
1-ol. Isoflavans are isomers of flavans in which 
the 2-phenyl ring has shifted to position 3. 
Hence, methods for their syntheses are similar to 
those for flavans with with the addition of the 
intramolecular etherification of 3-bromo-2-(4-
methoxyphenyl)propyl)-2,4-dimethoxybenzene 
with good ee. Flavens, on the other hand have a 
C=C double bond at either position 2 or 3. They 
are mainly synthesized through (i). Reduction of 
anthocyanins, (ii). Reduction of chalcones and 
(iii) hydroxylation of flavans with BMD followed 
by oxidation with POCl3 to flav-2-enes. 
Anthocyanins are generally synthesized via 
hydroxylation of flavans with subsequent 
oxidation. This report has presented the 
synthesis of flavans, isoflavans, neoflavans, 

flavens and anthocyanins. 
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