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Abstract 
 

This paper studies Strassen’s algorithms for fast multiplication of two finite dimensional matrices. 
However, one pertinent issue that has deterred Strassen’s scheme from been considered for practical 
usage is determining the cross-over point. In this light, large matrices with different sizes were randomly 
generated on which Strassen and conventional matrix multiplication algorithms were implemented in 
MATLAB R2008b. Two MATLAB built-in functions nextpow2 and pow2 were used for implementing 
padding techniques to ensure that the matrices are to the power of two. Three different experiments were 
carried out using five, four and three levels of recursion (divide and conquer algorithm) respectively to 
determine the suitable cut-off point ��  which were used to evaluate the optimal running time for 
Strassen’s algorithm. For each experiment, eight finite dimensional square matrices of real numbers were 
generated and iteratively multiplied. The experiment reveals that the cut-off point with five level of 
recursion optimized the Strassens time. 

 

Keywords: Matrix multiplication; Strassen algorithm; conventional algorithm; divide and conquer 
algorithm; cross-over point; padding techniques; matlab statements. 

 

1 Introduction 
 
The central role of the conventional matrix multiplication algorithm as a building block in solving problems 
in algebra and scientific computations has generated a significant amount of research into techniques for 
improving the performance of this algorithm [1]. Since 1960, many matrix multiplication algorithms have 
been discovered to multiply matrices fast with the cost estimate yielding very complex algorithms that are 
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impractical for many matrices of reasonable sizes [2]. The order of conventional algorithm has been 
established to be �(��) and a way forward is to reduce this order to �(��) where � < 3.  
 
Strassen’s divide and conquer matrix multiplication algorithm (MMA) was developed and found to be of 
order �(��.��) with a significant gain of 0.19(or 19%) in time and cost (see for example the work of 
Harvard) [3]. As a consequence, for sufficiently large values of � (in thousands), Strassen’s algorithm will 
run faster on the one hand, as well as offers a significant  improvement in cost efficiency on the other hand 
than the conventional algorithm for matrix multiplication.  
 
Strassen's MMA has a number of variations including Winograd's variant of this algorithm. Both algorithms 
are known to provide efficient single- and double-precision Graphics Processing Unit (GPU) 
implementations [4]. The single-precision implementations of these two algorithms have been compared 
analytically using the arithmetic count, device-memory transactions, and device memory to multiprocessor 
data volume metrics. Most of the analysis that have been performed on these algorithms indicates that, for 
16384 x 16384 matrices, single-precision implementation of Strassen's algorithm limited to four levels of 
recursion reduces the number of arithmetic operations by 41.3%, the number of transactions by 33.7%, and 
the volume by 29.2% relative to the best known GPU implementation of the classical �(��) MMA. The 
corresponding reductions achieved by Winograd's variant are 41.3%, 35.1%, and 31.5% respectively.  
 
Some researches on Strassen’s algorithm and its application to multiplication considered special case of odd-
sized representation of mathematical arrays of real numbers in rhomboidal form like structures (called 
rhotrices) basically by means of both padding and peeling approaches. A sequential recursive 
implementation as well as the modelling of a parallel framework implementation of the algorithm using java 
program has been done for rhotrices of relatively medium sizes [5]. 
 
There are newer and practically useful MMA, such as karatsuba’s fast multiplication of large numbers, the 
Coppersmith-Winograd algorithm each of complexity �(��.���) . The Ladderman non-commutative 
algorithm for multiplying 3 x 3 matrices using 23 multiplications developed in 1975 is still the best known 
for the 3 x 3 cases, even though its exponent is not as good as Strassen’s [6]. Even though faster, these 
newer algorithms are significantly more complicated to implement than Strassen’s [7]. A thorough 
investigation of the usefulness of these other techniques for an actual implementation has not yet been 
carried out and a lead way to the analysis of these algorithms, is to completely investigate the cross over 
point in Stressen's technique.  
 
Strassen’s algorithm is a recursive algorithm [3]. At some point in the recursion, once the matrices are small 
enough, we may want to switch from recursively calling Strassen’s algorithm and just do a conventional 
matrix multiplication. That is, the proper way to apply Strassen’s algorithm is to evade recurse on a “base 
case” of a 1 by 1 matrix, and switch earlier to use conventional matrix multiplication. The cross-over point 
between the two algorithms can be defined to be the value of � for recursive strassen’s algorithm is stopped 
and switch to conventional matrix multiplication. Determining the cross-over point has been one pertinent 
issue that has deterred strassen’s scheme from been considered for practical usage. 
 
This paper seeks to implement the conventional algorithm and Strassen’s algorithm and systematically 
determine their cross-over point by carrying out the following tasks: to use large matrices whose entries are 
randomly generated; to use Strassen algorithm to multiple two real � by � matrices; to stop the recursive 
strassen multiplication at some point ��  and use the conventional method onward; to experimentally 
determine the value of �� that optimizes the running time of the algorithms; and to use padding technique to 
ensure the implementation of any square matrices, whose dimensions is not a power of 2.  
 

2 Requirements and Methods 
 
Matrix multiplication � = � ∗ � is the linear algebraic product of the matrices � and � [8]. More precisely, 
��� � ∈ �, � ∈ � 
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�(�,�) = � �(�,�

�

���

)�(�,�)                                                                                                                                (1) 

 
For nonscalar � and �, the number of columns of � must equal the number of rows of �.  
 

2.1 A Simple Divide and Conquer Algorithm 
 
A divide and conquer algorithm works by recursively breaking down a problem into two or more sub 
problem of the same related type until these becomes simple enough to solve directly [2]. The solutions to 
the sub problems are then combined to give a solution to the original problem. Basic design step:  
 
Assuming � is a power of 2 and suppose �, � and � are divided into four �/2 x �/2  matrices. 
 

�
���    ���

���   ���
�  x  �

���    ���

���    ���
� =   �

���    ���

���    ���
�                                                                                               (2) 

 
then 
 

��� =  ��� ∗  ��� +  ��� ∗ ��� 
��� =  ��� ∗  ��� +  ��� ∗ ��� 
��� =  ��� ∗  ��� + ��� ∗ ��� 
��� =  ��� ∗  ���  ∗  ��� ∗ ��� 

 
Algorithm 1: A Divide and Conquer Algorithm 
 
SQUARE MATRIX MULTIPLY RECURSIVE (SMMR) 
 
����(�, �) 
 

1. � = �. ���� 
2. ��� � be a new � x � matrix 
3. if � = 1 
4. � = � ∗ � 
5. else partition �, � and � as in equation 2 
6. ��� = ����(���, ���) + ����(���, ���) 
7. ��� = ����(���, ���) + ����(���, ���) 
8. ��� = ����(���, ���) + ����(���, ���) 
9. ��� = ����(���, ���) + ����(���, ���) 
10. Return 

 
Algorithm 2: Strassen’s Matrix Multiplication Algorithm (�������� (�, �, �)) 
 
Assuming the size of the matrix is also of a power of two, the algorithm below holds; 
 

1. if � = 1 output � = � ∗ � 
2. else 
3. � = �/2 
4. Compute ���, ���, ���, ���, ���, ���, ���, ��� 
5. �1 = Strassen(���, ��� − ���, m) 
6. �2 = Strassen(��� + ���, ���, m) 
7. �3 = Strassen(��� + ���, ���, m) 
8. �4 = Strassen(���, ��� − ���, m) 
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9. �5 = Strassen(��� + ���, ��� + ���, m) 
10. �6 = Strassen(��� − ���, ��� + ���, m) 
11. �7 = Strassen(��� − ���, ��� + ���, m) 
12. ��� = �5 + �4 − �2 + �6 
13. ��� = �1 + �2 
14. ��� = �3 + �4 
15. ��� = �1 + �5 − �3 − �7 
16. Output � 
17. End If 

 
If the matrix dimension is not 1, the matrices are divided by 2. This is the Divide part. Seven recursive calls are 
made for each sub-divisions. Then the Conquer stage combines the sub problems to get the overall result. 
 

2.2 Odd Size Matrix 
 
In order to apply a level of Strassen algorithm, the row and column size of the matrix must be of a power of 
two. If the matrix dimension is not to a power of two, padding is done to add or delete a particular number of 
rows and columns. Padding is done by embedding the input matrix in a larger matrix of zeros, Fig. 2.1 
 

 
Fig. 2.1. Padding a matrix 

 
The product C = AB would appear at the upper left block of the matrix which is independent of the extra 
rows and columns. After Strassen’s algorithm is applied to the large matrix, the desired product is obtained 
by deleting the extra rows and columns. Any number of rows and columns can be added as long as the 
resulting matrix is of a power of two. 
 

2.3 Implementation of Strassens Algorithm 
 
The algorithm is implemented by writing a function and a script file that calls the function using MATLAB 
R2008b. The script file contains the ‘input’ statements used to get the test matrices, range of values for the 
test matrices and cut-off point from the user. The test matrices entered by the user is checked using the 
‘pow2’ function, a MATLAB inbuilt function which returns the value of the matrix size in terms of the 
power of two. The implementation also requires another MATLAB inbuilt function ‘nextpow2’ which 
returns the smallest power of two that is greater than or equal to the absolute value of the size of matrix in 
terms of the power of two. The value returned by the ‘nextpow2’ is used to create a large matrix that is used 
during padding. 
 

3 Procedures 
 
The Strassen’s algorithm involves two major processes: (1) The general process which involves inputting the 
matrix dimensions, padding, and the call to the Strassen function and (2) Strassen function which involves 
what happens when the Strassen function is called. The general process of how Strassen algorithm works is 
seen in the algorithm 3 [2]. 
 

 

A = 

0 
: 
 

: 

0 
0  .   .   .  

A B = 

0 
: 
 

: 

0 
0  .   .   .  

B C = 

0 
: 
 

: 

0 
0  .   .   .  

AB 



 
 
 

Agu and Atabong; BJMCS, 10(2): 1-12, 2015; Article no.BJMCS.18772 
 
 
 

5 
 
 

Algorithm 3: How Strassen’s Algorithm Works 
 

1. Input the smallest dimension �1 of matrices � and �  
2. Input the largest dimension �2 of matrices and � and � 
3. Input the step dimension of matrices � and � 
4. Input the cutoff(����) for number of iterations 
5. For  � = �1: ����: �2 
6. Generate �(�) and �(�) 
7. If � = Power of 2 
8. Compute � = ��������(�, �, ����) 
9. Else 
10. � = size of � 
11. � = next power of 2 > � 
12. � = � ∪ �  
13. New size of � = � 
14. Compute � = ��������(�, �, ����) 
15. Output � 

 
The Strassen function call process is shown in the algorithm 4 [8] (See Matlab code in appendix 1.0. 
 
Algorithm 4: Strassen’s Function Algorithm 
 

1. If � ≤ ����  
2. � = � ∗ � 
3. ���� 
4. � = �/2 ;  � = 1: � ;  � = � + 1: � 
5. �1 = ��������(�(�, �) + �(�, �), �(�, �) + �(�, �), ����) 
6. �2 = ��������(�(�, �) + �(�, �), �(�, �), ����) 
7. �3 = ��������(�(�, �), �(�, �) − �(�, �), ����) 
8. �4 = ��������(�(�, �), �(�, �) − �(�, �), ����) 
9. �5 = ��������(�(�, �) + �(�, �), �(�, �), ����) 
10. �6 = ��������(�(�, �) − �(�, �), �(�, �) + �(�, �), ����) 
11. �7 = ��������(�(�, �) − �(�, �), �(�, �) + �(�, �), ����) 
12. Return � 

 
MATLAB program (see appendix 1.0) was written to implement algorithms 3 and 4. The execution of the 
program presented the interface that was used in entering data as shown on Interface 3.1 
 

 
Interface 3.1. Entering data in MATLAB 
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4 Results and Discussion 
 
The MATLAB program written, was run in a Core I3 Lenoz computer with 4.00GB RAM and the following 
result was recorded. The experiment was iteratively carried out on eight different matrices in the steps of 512 
starting from 512 by 512 matrices through 4096 by 4096 matrices. The Steps dimensions (SDs) of the 
matrices were manually entered and the Power2 dimensions (PDs) were generated. The SDs matrices whose 
dimensions are not a power of 2 were padded in the generated PDs. Tables 4.1, 4.2, 4.3 and Figs. 4.1, 4.2 
and 4.3 respectively show the different number of recursions performed on the matrices used for the 
experiments, their cross-over points and the time complexities of their corresponding conventional and 
Strassen algorithms. 
 

Table 4.1. Experiment with 5 recursions 
 

SD 
(rows) 

PD 
 

Values of 5 levels of recursion 
(divide and conquer) 

CT (CPU time in 
seconds) 

ST (CPU time in 
seconds) 

512 
1024 
1536 
2048 
2560 
3072 
3584 
4096 

512 
1024 
2048 
2048 
4096 
4096 
4096 
4096 

 256       128          64      32       16  
 512       256          128    64       32  
 1024     512          256    128     64 
 1024     512          256    128     64 
 2048     1024        512    256     128 
 2048     1024        512    256     128 
 2048     1024        512    256     128 
 2048     1024        512    256     128 

0.2105 
0.1005 
0.7710 
0.7896 
6.2496 
6.1280 
6.1645 
6.1256 

0.0670 
0.2175 
0.7223 
0.7194 
3.9763 
4.0011 
3.9764 
4.0169 

 

 
 

Fig. 4.1. Graph of experiment with five recursions 
 

 

Conventional time 

Strassen’s time 
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Table 4.1 shows that optimization ��, the cross-over point, was made using five levels of recursions. For 
instance, it shows that for 512 by 512 matrices, the five values for the recursion: 256, 128, 64, 32 and 16 are 
the values of the divide and conquer algorithm. The last value 16 represents the cross-over point �� which 
indicates that the recursion stopped after the 16 by 16 matrices and switched over to conventional matrices to 
complete the strassen’s time. (Note that the time used for the strassen’s recursions and the conventional time 
after the cross-over add up to the total Strassen’s time, ST). CT is the time for the execution of the 
conventional matrix multiplication. The table also shows that the values 32, 64, 64, 128, 128, 128 and 128 
are the cross-over points �� for the matrix dimensions 1024, 1536, 2048, 2560, 3072, 3584 and 4096 with 
their respective values of divide and conquer algorithm. In the table the matrix dimension 1024 x 1024, the 
conventional algorithm completed the multiplication in 0.1005 seconds which is faster than Strassen’s 
algorithm that completed the multiplication of the same matrix dimension in 0.2175. As the matrix 
dimensions increase to 2560 x 2560 upwards, the time taken to complete the conventional matrix 
multiplication of step dimensions (SDs) 2560, 3072, 3584 and 4096 are 6.2496, 6.1280, 6.1645 and 6.1256, 
whereas, Strassen’s matrix multiplication completed the same SDs at 3.9763, 4.0011, 3.9764 and 4.0169. 
This shows that for sufficiently large values of n in thousands, Strassen’s algorithm will run faster and offer 
an improvement than the conventional algorithm. The graph in Figure 4.1 indicates that the lines for the 
conventional algorithm completed the multiplication faster (lesser seconds) at the matrix dimensions of 512 
x 512 and 1024 x 1024 up to 1536 x 1536 than the lines for Strassen’s algorithm. As the matrix dimensions 
increase above 1536 x 1536, the line for Strassen’s algorithm completed the multiplications in lesser 
seconds.  
 

 
 

Fig. 4.2. Graph of experiment with four recursions 
 
 

Conventional time 

Strassen’s time 
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Table 4.2. Experiment with 4 recursions 
 

SD 
(rows) 

PD Values of 4 levels of recursion 
(divide and conquer) 

CT (CPU time 
in seconds) 

ST (CPU time 
in seconds) 

512 
1024 
1536 
2048 
2560 
3072 
3584 
4096 

512 
1024 
2048 
2048 
4096 
4096 
4096 
4096 

 256         128          64           32       
 512         256          128         64        
 1024       512          256         128      
 1024       512          256         128      
 2048       1024        512         256      
 2048       1024        512         256      
 2048       1024        512         256      
 2048       1024        512         256      

0.0140 
0.1004 
0.7862 
0.7722 
6.3685 
6.2326 
6.1589 
6.1807 

0.0271 
0.0953 
0.5593 
0.5652 
4.2340 
4.4239 
4.3210 
4.2651 

 
Tables 4.2 shows that four levels of recursions were used for the cutoff points and that there are additional 
costs in the time to complete the corresponding matrix multiplications. The graph in Fig. 4.2 shows that 
when the cutoff point undergoes four recursions, strassens algorithm performs faster even with the matrix 
dimensions of 512 by 512. 
 

 
 

Fig. 4.3. Graph of experiment with three recursions 
 
 
 
 
 
 

Conventional time 

Strassen’s time 
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Table 4.3. Experiment with 3 recursions 
 

SD PD Values of 3 levels of recursion  
(divide and conquer) 

CT (in seconds) ST (in 
seconds) 

512 
1024 
1536 
2048 
2560 
3072 
3584 
4096 

512 
1024 
2048 
2048 
4096 
4096 
4096 
4096 

 256                  128                64             
 512                  256                128             
 1024                512                256          
 1024                512                256          
 2048                1024              512          
 2048                1024              512          
 2048                1024              512          
 2048                1024              512          

0.0315 
0.1048 
0.7753 
0.7773 
6.4553 
6.2016 
6.1695 
6.1806 

0.0137 
0.0793 
0.5959 
0.6107 
4.6971 
4.7111 
4.7505 
4.7355 

 
Tables 4.3 shows that three levels of recursions were used for the cutoff points and that there are even more 
additional costs in the time to complete the corresponding matrix multiplications. The graph in Fig. 4.3 
shows that when the cutoff point undergoes three recursions, Strassens algorithm performs much faster even 
with the matrix dimensions of 512 by 512. 
 

5 Conclusion 
 
As shown from the graph, Strassen's algorithm definitely performs better than the conventional algorithm for 
multiplying matrixes with large dimensions. If the division proceeds to the level of single matrix elements, 
then it means a large additional temporary storage is required therefore, reducing the potential advantage in 
performance. This overhead is generally limited by stopping the recursion early and performing the 
conventional matrix multiplication on sub matrices at the crossover point. From the above result evaluation, 
if a level of Strassen algorithm is efficient, it should be applied. Therefore as the matrix size increases, it is 
important to increase the number of recursions it undergoes to reduce the time complexity and enhance 
performance. 
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Appendix 
 
Appendix 1.0. Sample codes implemented in math lab 
 
n1 = input ('Enter the smallest dimension n1 of the matrices A and B '); 
n2 = input ('Enter the largest dimension n2 of the matrices A and B '); 
step =  input ('Enter the step dimensions of the matrices A and B '); 
a = input ('Enter left range of interval '); 
b = input ('Enter right range of interval '); 
%build levels 
l = zeros (4,1); 
l (1,1) = input('Enter Cutoff level for 512 x 512 matrix '); 
l (2,1) = input('Enter Cutoff level for 1024 x 1024 matrix '); 
l (3,1) = input('Enter Cutoff level for 1536 x 1536 matrix '); 
l (4,1) = input('Enter Cutoff level for 2048 x 2048 matrix '); 
l (5,1) = input('Enter Cutoff level for 2560 x 2560 matrix '); 
l (6,1) = input('Enter Cutoff level for 3072 x 3072 matrix '); 
l (7,1) = input('Enter Cutoff level for 3584 x 3584 matrix '); 
l (8,1) = input('Enter Cutoff level for 4096 x 4096 matrix '); 
% 
j = 0; 
size = round((n2-n1)/step+1); 
matrix_size = zeros (size,1);     
temps_con = zeros (size,1); 
temps_str = zeros (size,1); 
for n = n1:step:n2, 
    j = j + 1; 
    A = (b-a)*rand (n)+a; 
    B = (b-a)*rand (n)+a; 
    %Check if n is a power of 2 
    s = nextpow2(n); 
    power2s = pow2(s); 
    if power2s == n 
        matrix_size(j) = n; 
        tic; 
        C = A*B; 
        temps_con(j) = toc; 
        clear C; 
        %mi = input ('Enter level to switch to conventional multiplication matrix '); 
        mi = l (j,1); 
        [S,tstras] = strassen (A, B, mi); 
        temps_str(j) = tstras; 
        clear S; 
        clear A; 
        clear B; 
    else 
        m = power2s; 
        matrix_size(j) = m; 
        AP = zeros(m); 
        AP(1:n,1:n) = A; 
        clear A; 
        BP = zeros(m); 
        BP (1:n,1:n) = B; 
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        clear B; 
        tic; 
        CP = AP * BP; 
        temps_con(j) = toc; 
        clear CP; 
        %mi = input ('Enter level to switch to conventional multiplicationmatrix '); 
        mi = l(j,1); 
        [SP,tstras] = strassen (AP, BP, mi); 
        temps_str(j) = tstras; 
        clear SP; 
        clear AP; 
        clear BP; 
    end; 
 
end; 
plot(matrix_size(1:j),temps_con(1:j),'r',matrix_size(1:j),temps_str(1:j),'b'); 
xlabel('matrix dimension n'); 
ylabel('cost in second'); 
title('red: Conventional time ; blue: Strassen time'); 
matrix_size(1:j),temps_con(1:j), temps_str(1:j),l 
 
Listing 1: Main script codes 
 
function [C, strastime] = strassen (A, B, nmin ) 
strastime = 0; 
n = length(A); 
if n <= nmin 
    tic; 
    C = A*B; 
    strastime = toc; 
else 
    m = n/2; i = 1:m; j = m+1:n; 
    [P1,tstra1] = strassen (A(i,i)+A(j,j), B(i,i)+B(j,j), nmin); 
    [P2,tstra2] = strassen (A(j,i)+A(j,j), B(i,i), nmin); 
    [P3,tstra3] = strassen (A(i,i), B(i,j)-B(j,j), nmin); 
    [P4,tstra4] = strassen (A(j,j), B(j,i)-B(i,i), nmin); 
    [P5,tstra5] = strassen (A(i,i)+A(i,j), B(j,j), nmin); 
    [P6,tstra6] = strassen (A(j,i)-A(i,i), B(i,i)+B(i,j), nmin); 
    [P7,tstra7] = strassen (A(i,j)-A(j,j), B(j,i)+B(j,j), nmin); 
    C = [ P1+P4-P5+P7  P3+P5;  P2+P4  P1+P3-P2+P6 ]; 
strastime = strastime + tstra1 + tstra2 + tstra3 + tstra4 + tstra5 + tstra6 + tstra7; 
end 
 
Listing 2: Strassen function call codes 
_______________________________________________________________________________________ 
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