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Abstract
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Synthetic aperture radar (SAR) images are often affected by speckle noise, which can hinder
accurate interpretation and subsequent use of the images in applications such as target detection
and segmentation. To address this issue, we propose a denoising algorithm based on a
multi-scale attention cascade convolutional neural network (MSAC-Net). Our algorithm
employs multi-scale asymmetric convolution to extract image features and an attention
mechanism to integrate these features. Additionally, we designed a multi-layer deep cascade
convolutional network to enhance the generalization ability of the model features. Experimental
results show that our proposed MSAD-Net model significantly outperforms state-of-the-art
SAR image denoising algorithms. Specifically, it achieves a significant improvement in peak
signal-to-noise ratio, with an increase of about 0.81-13.97 dB, and structural similarity index
measure, with an increase of about 0.01-0.14. Overall, our study presents a novel denoising
algorithm for SAR images that greatly improves the accuracy of subsequent image applications.

Keywords: synthetic aperture radar, image denoising, attention mechanism,

convolutional neural network

(Some figures may appear in colour only in the online journal)

1. Introduction

Synthetic aperture radar (SAR) finds applications in Earth sur-
face observation, resource management, military, and security
fields [1]. SAR produce high-resolution images by receiving
and processing radar echo signals. Unlike traditional optical
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remote sensing satellites, SAR can acquire images despite
weather disturbances such as clouds, fog, rain and snow,
thus providing stronger all-weather observation capabilities,
higher resolution, broader coverage, more accurate measure-
ment capabilities, and more flexible data processing meth-
ods. However, SAR images may display speckle noise, which
appears as small dots or speckles and is usually a mixture of
low and high-frequency components. Speckle noise is char-
acterized by a granular appearance with a black and white
texture. This is due to the fact that SAR images are formed
through coherent processing of the radar echoes from consec-
utive pulses, resulting in a pixel-by-pixel variation in the echo
intensity [2]. The unique imaging principle of SAR leads to

© 2023 The Author(s). Published by IOP Publishing Ltd
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an excessive multiplicative component in SAR images, which
gives rise to speckle noise that is more difficult to remove com-
pared to additive noise. Speckle noise and additive noise can
be represented as follows:

Fspecklefimg :fgfimg ® Mmult

Faaditive_img = fo_img + Madd (D

where Fpeckle_img 15 the noisy SAR image, f; img is the noise-
free SAR image, iy, is the multiplicative noise due to coher-
ent interference, and n,4q is the additive noise .

Speckle noise can impact image quality and accuracy, par-
ticularly in applications requiring precise target identification
and measurement. Therefore, restoring a clean image from
SAR images with noise is an urgent problem that needs to be
addressed.

Atpresent, SAR image denoising is mainly divided into two
approaches: image filtering processing [3] and non-coherent
multi-look processing [4]. Image filtering processing aims
to filter noise by using filters. Previous research by Donoho
[5] and Johnstone [6] proposed a wavelet value shrinkage
method for inherent speckle noise in SAR images. The method
involves performing wavelet transform on both the noise and
signal. In the wavelet domain, the wavelet transform itself
has a strong ability to concentrate signal energy. This enables
it to effectively distinguish the signal from the noise in the
frequency domain, and then filter it using a set threshold to
achieve the denoising effect. Later, this theory became a fun-
damental part of traditional denoising algorithms. Another
mainstream method in spatial filtering denoising is non-local
mean filtering [7]. This algorithm differs from threshold fil-
tering as it is a spatial global algorithm. It converts similar
gray information in the entire image into the current pixel
gray. Similarity is expressed by Euclidean distance, and effect-
ive denoising is achieved by the gray-weighted average of
the entire image. The SAR-BM3D algorithm represents this
approach [8]. After that, Murali Mohan Babu et al [9] fur-
ther advanced the work of literature [8] by utilizing bilat-
eral sampling to sample image blocks in BM3D, followed by
discrete wavelet transform. They also introduced the concept
of wavelet thresholding to improve the retention of image
details in the denoised image. Later, the sparse representa-
tion model became popular for SAR image denoising due
to its excellent performance in removing speckle noise [10].
However, its large algorithm size consumes high computing
resources, making it less practical for widespread use. Rudin
et al [11] proposed a total variation (TV) model for denoising,
which achieved good results in speckle noise removal despite
the staircasing effect it produced. In recent years, literature
[12—14] has made significant improvements and optimizations
to the TV denoising algorithm. By minimizing the staircasing
effect while preserving image edge information, the improved
algorithm model maintains its adaptability.

The WNNM algorithm, proposed by Gu et al [15], is based
on low-rank matrix decomposition and nuclear norm minim-
ization. This algorithm takes advantage of the fact that the
low rank of the image and the high rank of the image noise

are fundamentally different. By solving the optimization prob-
lem of the low rank matrix using the nuclear norm min-
imization method, this algorithm utilizes the non-local sim-
ilarity of the image for image denoising. Compared to the
BM3D algorithm, the WNNM algorithm shows a significant
qualitative improvement in denoising effect. However, des-
pite its good performance in removing SAR speckle noise, this
algorithm has significant limitations in practical applications.
Another SAR image denoising technique is incoherent multi-
look denoising. This method decomposes the image into mul-
tiple Doppler bandwidths, using different synthetic apertures
for each bandwidth, and then superimposes the decomposed
images. While this method effectively removes speckle noise,
it can cause a decrease in resolution of the decomposed image.
This decrease in resolution may have significant impacts on
other tasks such as change detection.

In recent years, deep learning has rapidly developed and is
increasingly being used in various industries to process signal
tasks. This is because deep learning can effectively extract the
distribution and features of signals. For instance, in the field
of neuroscience, studies [16, 17] have utilized deep learning
to process electromagnetic wave signals in the human brain.
In the medical field, a study [18] has detected changes in the
thyroid gland in the human body using CT scans to aid doctors
in diagnosing patients’ conditions. Other studies [19-21] have
innovatively changed the algorithm models for detection and
recognition, and achieved excellent performance in detection
and recognition accuracy. In the field of image denoising, deep
learning has also been widely applied. However, the perform-
ance of deep learning models may vary depending on the spe-
cific application. For natural images, Zhang et al [22] proposed
the classic denoising convolutional neural network (DnCNN),
an end-to-end denoising mechanism that integrates residual
network learning and the batch normalization (BN) method
to accelerate the network’s convergence. The network exhib-
its good robustness in feature extraction and achieves excel-
lent denoising results. Subsequently, DANet Yue et al [23]
used the generative adversarial network (GAN) framework to
train their model. However, the instability of training based
on the GAN model becomes the most significant limitation in
adversarial networks, so it takes longer time to converge. Nev-
ertheless, their algorithm produces good results in ordinary
image denoising. Another model, FFDNet, was proposed by
Zhang et al [24], which improves the shortcomings of DnCNN
and introduces the noise level mapping M as the input of the
model. FFDNet performs well in denoising effect. Since the
SAR image noise itself is multiplicative noise, Chierchia et al
[25] proposed SAR-CNN for SAR image denoising. How-
ever, due to the particularity of noise, the algorithm has cer-
tain requirements for its training samples. SAR-CNN only
selects non-coherent multi-view images, which have inher-
ent disadvantages in noise sample training, and its denois-
ing effect is general. The average peak signal-to-noise ratio
(PSNR) is only 25.95 dB. Liu et al [26] proposed an effective
method for suppressing speckle noise in SAR images using
GAN. The network consists of a generator and a discrimin-
ator, and uses the TV loss function as the overall optimization
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scheme. Compared to traditional neural network algorithms,
this method does not require logarithmic transformation and
directly performs end-to-end network training, achieving good
denoising performance. Dalsasso et al [27] proposed a semi-
supervised denoising model (SAR2SAR) that mainly uses
time series to obtain residual information from the image,
which is essentially different from the neural network model.
The method achieved denoising performance comparable to
that of neural networks. In 2022, Thakur and Maji [28] pro-
posed AGSDNet, which combines attention mechanism and
gradient to denoise. While achieving better denoising results,
the model itself is heavy-weighted, requires a large number
of data sets as support, and the network convergence rate is
general.

In summary, traditional denoising algorithms for SAR
images typically use global denoising techniques. The prin-
ciple involves processing and judging the image using global,
similar information. However, in cases of high-resolution
images, the algorithm requires extensive preprocessing, such
as smoothing and pixel discrimination through neighborhood
processing of each image block. This algorithm consumes a
large amount of computing resources, and its practical applic-
ation is limited by time and space constraints, making it inef-
ficient for denoising tasks. While these algorithms improve
denoising effects, they increase time costs. Deep learning
algorithms have shown promise in image denoising. How-
ever, current methods such as those described above still have
limitations, such as slow network convergence speeds, heavy
model weights, and reduced accuracy. To address these issues,
this paper proposes a denoising algorithm based on a multi-
scale attention cascaded layers network (MSAC-Net). The net-
work employs the idea of multi-scale asymmetric convolution
(MAC) and attention. Compared with single convolution ker-
nels, MAC kernels have a good image receptive field, mean-
ing they can extract image information from different scales
to capture more detailed image details. Subsequently, the con-
volution kernels of different scales are integrated into the net-
work, and the attention mechanism is introduced to the stitched
feature map to divide the attention of the features, enhan-
cing the main features of the image. The dense cascade block
(DCB) is used to further strengthen the features in the middle
of the network. Finally, the image restoration and reconstruc-
tion are achieved through the subtraction calculation method.

2. Model structure

2.1. Multi-scale asymmetric convolution module

Most CNNSs currently use regular convolution structures, such
as 3x3,4x4,5x5 and n x n. While regular convolution
kernels have shown good results in feature extraction, they still
have deficiencies in extracting certain types of image edge and
fuzzy information. This paper proposes the use of an asymmet-
ric convolution structure, which is an algorithm structure first
proposed by Chunwei Tian in 2021, called asymmetric convo-
lution kernel (ACNet) [29]. The network is highly effective
in recovering noisy low-resolution images, and asymmetric
convolutions can achieve model compression and acceleration

conv3*1+Relud

Figure 1. Multi-scale asymmetric convolution module.

compared to existing square convolutions. Previous studies
have shown that standard convolutions can be decomposed
into and convolutions to reduce the number of parameters.
The theory behind this is relatively simple: if the rank of the
two-dimensional convolution kernel is 1, the operation can be
equivalently converted into a series of one-dimensional con-
volutions. However, since the eigenvalues learned by the con-
volution kernel in deep networks follow a distribution, and
their internal rank is higher than in practice, directly apply-
ing the feature image to the convolution kernel can result
in significant information loss. Jin et al [30] used structural
constraints to separate two-dimensional convolutions, and the
operation time was nearly twice as fast while still achieving
good accuracy. Denton et al [31] proposed an infinite approx-
imation low-rank matrix by utilizing the singular value decom-
position technique, and subsequently refined the upper net-
work to enhance recovery performance. Jaderberg et al [32]
successfully applied horizontal and vertical kernels to train
their network by minimizing reconstruction errors. Asymmet-
ric convolution is also widely utilized for network structure
design. For instance, in Inception-v3, convolution is replaced
by a combination of convolution and asymmetric convolution.
Additionally, asymmetric convolution is a widely adopted
technique for designing network architectures. For example,
in Inception-v3, conv 7 x 7 is replaced by conv 1 x 7 and conv
7 x 1.MAC moduleisusedconv3 x 3,conv5 x 5,conv 1 x 3,
conv 3 x 1, as shown in figure 1. These four convolution ker-
nels are used to extract the initial features of the image, and
finally Concat (Cat) them. The front-end part of the MAC can
be expressed as:

F(x) = Cat[ReLU; (conv5 x 5(x)),ReLU; (conv3 x 1(x)),
ReLU; (conv3 x 3 (x)), ReLU; (conv1 x 3(x))]. (2)

In the expression (1), each convolution kernel needs to pass
through the ReLU; (i = 1, 2, 3, and 4) activation function to
filter the image value to the range [0,00], so as to prevent the
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Figure 2. The architecture of CBAM. ‘@’ represents feature fusion addition, ‘®’ represents feature value multiplication.
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Figure 3. Dense cascade block. ‘@’ represents the addition of feature data; ‘——’ connection represents residual connection, ‘—’

represents the direction of data transmission.

gradient explosion and disappearance of the image during the

back propagation. F(x) denote output of the front-end model.

The expression of the final output of the MAC as:

MAC (O) =ReLU [Conv3 x 3 (F(x))]. 3)

In the expression (2), MAC (O) denotes the output of the
whole module.

2.2. Attention mechanism

The attention mechanism is a process that autonomously
learns a set of weight coefficients throughout the network. It
emphasizes the regions of interest while suppressing irrelev-
ant background regions in a dynamic weighting manner. Cur-
rently, there are three main attention mechanisms: channel
attention, spatial attention, and self-attention. Channel atten-
tion constructs weight coefficients for different channels of the
current model, and learns to capture the best model channel,
and independently reduces the weight system of the remain-
ing channels to strengthen important features and suppress
non-important ones. The representative of channel attention
is mainly SEnet [33]. Spatial attention improves the feature
representation of key regions. The spatial information in the

original image is transformed into another space through the
spatial transformation module, and the key information is
retained. A weighted mask is generated for each location, and
the output is weighted, thereby enhancing the specific target
region of interest while weakening the irrelevant background
region. This paper introduces the current mainstream attention
mechanism, CBAM [34]. Its structure is shown in figure 2,
which centralizes the dual attention mechanism of space and
channel, and its effect is better.

2.3. Dense cascade block layers

Cascaded is a neural network that has the ability to automat-
ically train and add hidden units. It offers several advantages
such as a high learning rate, customizable network neurons
and depth, and effective backpropagation. Drawing inspiration
from Dense Net [35], this paper proposes a novel dense cas-
cade block (DCB) network structure, as illustrated in figure 3.
Each node in the network can be represented as:

i—1
Xi = Xu+ReLU (BN (Conv(X; _1)))
n=0

(=123 @

X4 = ReLU (Conv (AvgPool (X3))). 5)
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The structure of the proposed approach comprises a series
of convolution modules. During forward propagation, the out-
put of each module is used as input for the subsequent module,
resulting in dense connections that enable the parameters to
interact and iterate among the convolution layers. Ultimately,
the global receptive field of the image is obtained through the
final generalized average pooling layer, allowing the network
to learn image information more effectively. The expression
for the DCB module is as follows:

DCB(0) = o (BN (Conv (X;))). (6)

The output of dense cascade block layers is represented by
DCB(0), the o denote sigmoid function, the sigmoid function
maps any real number to a value in the range (0,1), and is
defined as follows:

1

3. Denoising mode

3.1. Denoising method

In this section, we introduce MSAC-Net, a denoising network
designed by us, as shown in figure 4. MSAC-Net is mainly
composed of a MAC module, an attention module, and a DCB.
In this paper, the network is designed as an end-to-end struc-
ture, where the input is a noisy image and the output is a
clean image. The denoising mechanism of this paper is as fol-
lows: firstly, the initial ACNet and attention module are used
to obtain the basic features of the image. Secondly, the DCB
independently learns the residual information of the image.
Finally, the output features of the last layer are fed back, and
the image is reconstructed after denoising. The network para-
meters of MSAC-Net are shown in table 1.

3.2. Loss function

Due to the particularity of SAR image, the noise image is
mostly multiplicative noise, so the data set trained by this
model needs to be preprocessed by adding noise. The image
is denoised according to Y(a,b) =n(o,6) x X(a,b), where
Y(a,b) represents the input noise image, X (a,b) represents
the unnoised image, n(c,d) and represents the noise with a
variance of o. After the input noise image passes through
the network MSAC-Net, a residual image (Resim) is output,
expressed as:

MSAC - Net[Y (a,b)] = Resim (a,b) = Y (a,b) —n(c,6). (8)

Subsequently, a given mean square error is used to train the
denoising network, and its loss function is expressed as:

1
loss (w, ) = + [MSAC — Net[Y (a,b)] - n(a,0)|> ()
where w and b are the weights and bias learned in the net-

work, and loss (w,b) are the set of all parameters learned in
the network.

3.3. Evaluating indicator

In this paper, we conduct qualitative and quantitative exper-
iments to evaluate and demonstrate the performance of our
proposed MSAC-Net model in image denoising. We visually
assess the clarity and completeness of the denoised image, and
use objective evaluation metrics such as PSNR and structural
similarity index measure (SSIM). If the size of the original
clean image is N x M and the denoised image is y then PSNR
can be expressed as:

N x Mf*max

[x(a,b) = y(a,b)]"

PSNR = 10log, (10)

NS

N
>
i=1

j=1

Among them, fmax represents the maximum intensity of
the input image. For some 8 bit grayscale images, there are
256 possible grayscale values, so fmax = 256. To measure the
denoising effect of the model, we employ PSNR. However,
it is also important to consider other indicators that can evalu-
ate the difference between the original image and the denoised
image. SSIM is one such quality assessment measure that com-
pares the two images. For calculating SSIM, we use two non-
negative image signals, x and y

Cpuy + 1) 20+ €2)
(1242 +c) (o2 + 0t +c2)

SSIM (x,y) = (11

where p, and p, represent the average strength of X and Y,
respectively, and o, and o, represent the standard deviation of
X and Y, respectively. oy, is the covariance of images x and y,
¢ and ¢, are constant values. Local parameters fiy, iy, Oy, 0}
and o, are in a 8 x 8 square window and are calculated in
pixel pans.

3.4. Comparison algorithms

Comparing algorithms is an essential step in data analysis
and machine learning research, as each algorithm has its
unique advantages and limitations. Moreover, comparing dif-
ferent algorithm models can help us understand their perform-
ance on various datasets and evaluation metrics. In this study,
we evaluate the performance of MSAC-Net by comparing
it with state-of-the-art algorithm models, including WNNM
[14], SAR-BM3D [8], SAR-CNN [23], GAN [21], SAR2SAR
[25], and AGSDNet [28]. To ensure a fair comparison, we util-
ize the default settings provided by the authors in their respect-
ive algorithm literature and calculate PSNR and SSIM as error
metrics to comprehensively evaluate their practical application
value.

4. Experimental results and analysis

4.1. Experimental platform

The experimental platform of this paper is built, as shown in
table 2.
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Figure 4. The architecture of MSAC-Net.

Table 1. MSAC-Net network parameters. ‘—’ means no; (1,0)
means to fill in rows, (0,1) means to fill in columns; the
‘label’—‘label’ represents the middle position of the two labels; ‘n’
in [label-label], represents the number from top to bottom.

Kernel
Local size  Stride Padding Channel Pooling (size)
[F(0)—F(1)], 5x5 1 2 64 —
[F(0)—F (1)l 3x3 1 1 64 —
[F(0)—F(1)]3 1x3 1 (0,1) 128 —
[F(0)—F(1)]s 3x1 1 (1,0 128 —
F(1) 3x3 11 64 —
F(2) — — — 32 —
x0 3x3 1 1 32 —
XX, 3x3 1 1 64 —
Xo—X; 3%x3 1 1 32 —
X3—Xy 3x3 1 1 64  Average (2x2)
FQ3) 3x3 11 1 —
F4) 3x3 1 1 1 —
Table 2. Experiment platform.
Hardware Detail
GPU NVIDIA GeForce RTX 3090 GPU
CPU 12th Gen intel(R) Core(TM) i9-12900KF
@ 3.19 GHz
Language framework Anconda + Python3.8.13 + Pytorch1.11.0
GPU memory 24 G
CPU memory 32G
System Windows 10

4.2. Datasets

The MSAC-Net network proposed in this paper requires noisy
images and corresponding noise-free images as training sets.
However, obtaining image datasets such as SAR can be dif-
ficult. Therefore, we selected the NWPU-RESISC45 dataset
of Northwestern Polytechnical University [36] for our study
and manually synthesized the required dataset. To do this, we
first selected 1000 images from the NWPU-RESISC45 data-
set, each with 256 x 256 pixels. These images included 100
images of each type, such as airport, coastline, rainforest, ter-
race, bridge, ship, highway, land and mountain. We used a total

of 1000 images as training sets, selecting 20 images of each
type for a total of 200 images as verification sets. We also
collected a total of 1200 clean, noise-free images. To create
the noisy image dataset, we added Gaussian noise to the clean
images in a multiplicative manner, using a mean value of 0
and a variance. This completed the dataset of noise images.
We conducted comparative experiments in this paper, which
included four groups of images with different variance levels
(o =20,30,40,50), as shown in figure 5. We verified that the
noise adding method used in the dataset was consistent with
the method used in the training dataset.

4.3. Experimentation

In this paper, we conducted an experiment using 1000 clean
SAR images. At the start of training, each image, which had
a resolution of 256 x 256 pixels, was divided into 466 pane
images with a resolution of 40 x 40 pixels using a sliding
window approach with a step size of 10 pixels. We applied
various data augmentation techniques, such as flipping, trans-
lating, scaling, rotating and mirroring, to enhance the data-
set. The resulting images were used to train the MSAC-Net
network.

We set the epoch of the network training to 150, with a BN
setting momentum of 0.95 and a batch size of 64. We used the
Adam [37] optimizer to optimize the network’s weight coef-
ficients, and introduced dynamic adjustment learning rate (Ir).
We initially set the learning rate to 0.01, and then reduced
it by a factor of 0.3 at epochs 15, 55, and 115, respectively.
The other settings were kept at their default values. The model
was trained for 150 rounds, with a total of 1092 188 data iter-
ations. The loss curve is shown in figure 6. During testing, we
found that the MSAC-Net could effectively denoise images of
any size. In this paper, we implemented Gaussian noise addit-
ive processing on images using Python, and used the Pytorch
framework to implement the model algorithms.

4.4. Ablation experiment

The purpose of this experiment is to verify the importance
and role of each module in the MSAC-Net model. To achieve
this, we prepared a small SAR image dataset of 100 images



Meas. Sci. Technol. 34 (2023) 085403

H Shan et al

Figure 5. Images at different noise levels. (a) Ground image. (b) Noisy image with ¢ = 20. (c) Noisy image with ¢ = 30. (d) Noisy image

with o = 40. (e) Noisy image with o = 50.

loss line

401 MAn

35+

304

25 4
2 20
L

154

10

i L’W/\/\MJ\NVWJLW\V\M

0+

0 20 40 60 8 100 120 140
epoch
Figure 6. The train model of loss line.
Table 3. Ablation learning.
MAC CBAM DCB PSNR (dB)

Model A v X v 27.68
Model B X v v 26.34
Model C 4 v SG 23.75
Model D v v v 29.81

with a noise level of 35. We built three different modules for
training and testing and compared their denoising perform-
ance. The three modules are the MAC module, the attention
module (CBAM), and the dense cascade layer module (DCB).
By reasonably deleting and adding these three modules, we
created four different combinations: Model A (containing only
MAC and DCB), Model B (containing only CBAM and DCB),
Model C (containing a single DCB and MAC combined with
CBAM), and Model D (containing multiple layers of DCB and
MAC combined with CBAM). We tested the four combina-
tions on the same image, and we used PSNR to quantify their
denoising performance, as shown in table 3.

In table 3, ‘SG’ means single-layer DCB, ‘v’ means inclu-
sion relationship, and ‘X’ means removal relationship. After
conducting experiments, we discovered that DCB plays a sig-
nificant role in the performance of our model, while MAC has

30

N
(V]
T

PSNR(dB)
S

—e— Pure Train

[y
[,]
T

—a— Mix Train

Jury
o

0 2 4 6 8 10 12 14 16 18 20 22
Number of DCB

Figure 7. PSNR values of different DCB layers in different modes.

a moderate impact. In contrast, CBAM has a relatively small
effect on the overall model. Overall, our experiment validates
the importance and role of different components in MSAC-
Net, and the above conclusions can be drawn.

4.5. Experimental analysis under different background
images

To achieve the best denoising effect of MSAC-Net, this study
performed ablation experiments on DCB layers of varying
depths. The study compared the performance of different DCB
layers using a single background type image for pure train
mode and different DCB layers using a multi-background type
image for mix train mode. Each layer underwent 150 rounds
of training, with a noise level of 40 (¢ = 40). The ship image
was selected for pure training mode while ten types of images
were used for mix training mode. The ship image was verified
ten times in both pure and mix training modes, and the aver-
age PSNR value of these ten trials was calculated as shown in
figure 7. From the figure, it is evident that the highest PSNR
values were achieved when the DCB layer depth was 12 lay-
ers, reaching 29.3 dB and 28.5 dB for pure and mix training
modes, respectively. Despite the pure training mode having a
0.8 dB higher value than the mix training mode, the 12 layers
were still identified as the optimal DCB layers for the network
proposed in this study.

In summary, as shown in figure 7, the PSNR value of the
network in a pure training mode (using a single type of image)
can reach 29.3 dB, while in a mixed training mode (using mul-
tiple types of images), its PSNR value is 28.5 dB. Therefore,
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Figure 8. Denoising effect comparison; (a) original image; (b) noisy image; (c) image denoised with WNNM; (d) image denoised with
SAR-BM3D; (e) image denoised with SAR-CNN; (f) image denoised with GAN; (g) image denoised with SAR2SAR; (h) image denoised

with AGSDNet; (i) image denoised with MSAC-Net.

we can conclude that training the network with only a single
type of image can effectively improve its denoising perform-
ance. However, due to the complexity and diversity of SAR
noise images in practical applications, the pure training mode
cannot guarantee that the entire algorithm will have better gen-
eralization ability and robustness. Consequently, multi-type
image training is more suitable for practical applications, and
it can still perform well in terms of denoising performance.

4.6. Comparative analysis

In this paper, we compare seven denoising algorithms using
verification images of ships, mountains and coasts. Figure 8
shows the denoising effect on the ship image, while figures 9
and 10 demonstrate the denoising effects on the coast and
mountain images, respectively. These figures visually com-
pare the denoising results of the different algorithms at a noise
level of 30 (o = 30).

This study presents an analysis of the denoising effects
of seven algorithms on three images. In figure 8, it can
be observed that the denoising results of WNNM, SAR-
CNN, and SAR-BM3D exhibit many artifacts and severe
texture loss, indicating incomplete removal of noise and
blurred visual effects. Although GAN preserved some details,
the ship appears blurry, and most of the edge information
between the ship and the shore has been erased. While
SAR2SAR and AGSDNet removed most of the noise, some
scattered speckle noise around the ship’s edge was not effect-
ively suppressed, resulting in numerous artifacts around the
ship’s body and the water surface. In contrast, the proposed
algorithm achieved excellent restoration of ship and shore

information, and the water surface around the ship was pro-
cessed cleanly compared to the original image. In figure 9,
both WNNM and SAR-BM3D algorithms significantly blur
the wave edge information in the coastal image. In the
denoising result images of SAR-CNN, GAN and SAR2SAR,
many noise points remain, and some corners are distorted or
lost. Although AGSDNet removes most of the noise around
the waves, the overall appearance is far from the original
image. The proposed method produces cleaner results in
the wave edge processing, making the image appear clearer
than the original. In figure 10, the four algorithms, GAN,
WNNM, SAR-BM3D and SAR-CNN, exhibited mediocre
denoising performance, as some regions remain relatively
blurred. SAR2SAR fails to recover the sharp edges of moun-
tainous terrain, and AGSDNet exhibits some noise in the
corners of gullies. The proposed method removes the majority
of the noise, resulting in extremely clear gully lines and super-
ior overall denoising performance compared to the first six
algorithms.

The main purpose of the experiment is to test the perform-
ance of the proposed MSAC-Net on datasets. Table 4 is the
PSNR results of different methods on different images. Table 5
is the SSIM results of different methods on different images.
In table 4 and table 5, bold numbers represent the highest in
each row. The rows in tables 4 and 5 are the PSNR and SSIM
values generated by different algorithms when the noise para-
meter is o = 20, 30, 40, 45, 50, and the columns are the PSNR
and SSIM values of the same method at different noise levels.
The methods included are: SAR-BM3D model with denois-
ing parameter o, SAR-CNN model with denoising parameter
o, WNNM model with denoising parameter o, GAN model
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Figure 9. Coastal denoising renderings. (a) Original image; (b) noisy image; (c) image denoised with WNNM; (d) image denoised with
SAR-BM3D; (e) image denoised with SAR-CNN; (f) image denoised with GAN; (g) image denoised with SAR2SAR; (h) image denoised
with AGSDNet; (i) image denoised with MSAC-Net.
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Figure 10. Mountain denoising renderings. (a) Original image; (b) noisy image; (c) image denoised with WNNM; (d) image denoised with
SAR-BM3D; (e) image denoised with SAR-CNN; (f) image denoised with GAN; (g) image denoised with SAR2SAR; (h) image denoised
with AGSDNET; (i) image denoised with MSAC-Net.
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Table 4. The denoising level of each algorithm for various types SAR images under different noise levels (PSNR).
PSNR (dB)

Image o WNNM SAR-BM3D SAR-CNN GAN SAR2SAR AGSDNet MSAC-Net
20 28.87 29.28 31.85 30.54 30.61 31.01 32.31
30 26.62 27.13 30.14 29.36 28.17 30.47 31.01

Ship 40 26.35 26.52 29.86 28.94 28.23 28.55 29.97
45 25.28 25.93 27.77 27.62 27.92 29.61 28.11
50 25.17 24.01 27.61 25.07 26.83 27.51 27.62
20 28.15 29.13 31.10 29.34 29.57 29.56 33.76
30 26.53 27.65 30.03 27.13 26.47 27.11 29.88

Mountain 40 25.72 26.04 28.53 25.60 25.39 2541 29.59
45 25.14 25.99 27.17 25.17 24.99 25.08 28.58
50 24.05 2592 27.31 24.64 24.37 23.61 26.21
20 28.22 30.21 31.01 29.37 29.92 29.14 31.83
30 26.63 28.52 29.43 27.13 26.47 27.66 30.58

Coastal 40 26.55 27.73 28.59 25.89 25.27 26.41 29.98
45 25.39 26.24 26.87 25.79 24.99 25.53 28.93
50 24.37 25.55 25.02 24.46 24.13 25.08 25.07

Table 5. The denoising level of each algorithm for various types SAR images under different noise levels (SSIM).
SSIM

Image o WNNM SAR-BM3D SAR-CNN GAN SAR2SAR AGSDNet MSAC-Net
20 0.7929 0.8324 0.8923 0.8721 0.8814 0.9062 0.9107
30 0.7538 0.7826 0.8621 0.8817 0.8637 0.8897 0.8969

Ship 40 0.7063 0.7505 0.8669 0.8429 0.8553 0.8815 0.8763
45 0.6818 0.6867 0.7926 0.8621 0.8432 0.8762 0.8618
50 0.6821 0.6027 0.7818 0.8411 0.8291 0.8438 0.7881
20 0.7867 0.8354 0.9012 0.8617 0.8803 0.9142 0.9255
30 0.7128 0.7891 0.9010 0.8608 0.8637 0.8907 0.8764

Mountain 40 0.6957 0.7497 0.8725 0.8421 0.8553 0.8681 0.8683
45 0.6708 0.7134 0.7971 0.8519 0.8432 0.8583 0.8287
50 0.6684 0.6808 0.8211 0.8107 0.8291 0.8432 0.7878
20 0.7911 0.8561 0.9036 0.8797 0.8704 0.9011 0.9052
30 0.7187 0.7899 0.8947 0.8703 0.8612 0.8633 0.8623

Coastal 40 0.7064 0.7587 0.8809 0.8412 0.8551 0.8815 0.8524
45 0.6817 0.7308 0.7437 0.8134 0.8432 0.8762 0.8194
50 0.6512 0.6915 0.7018 0.7938 0.8311 0.8276 0.7547

with denoising parameter o, SAR2SAR model with denoising
parameter o, AGSDNet model with denoising parameter o and
MSAC-Net in this paper. From table 4, it can be seen that
the PSNR value of the proposed MSAC-Net is about 2.51 dB
higher than that of SAR-BM3D, about 0.74 dB higher than
that of SAR-CNN, about 3.36 dB higher than that of WNNM,
about 2.49 dB higher than that of GAN, about 2.67 dB higher
than that of SAR2SAR, about 2.11 dB higher than that of
AGSDNet. Furthermore, except for the noise level in o = 50
or 0 = 40, MSAC-Net is 1.5 dB less than AGSDNet, and the
PSNR values obtained by the rest of the model at each noise
level are higher than the other six values compared. Especially
when the noise parameter is 20, the method in this paper is
3.44 dB higher than the WNNM algorithm. In terms of struc-
tural similarity, it can be seen that the structural similarity

of MSAC-Net is mostly the highest value in the comparison
method. Therefore, combining PSNR and SSIM, the proposed
methods is superior to the state-of-the-art methods in denois-
ing performance.

5. Conclusion

In this paper, we propose a new denoising model called
MSAC-Net to solve the problem of inherent noise gener-
ated by SAR images. Our model uses an end-to-end archi-
tecture that does not require a separate subnet or manual
intervention. The proposed method consists of three modules:
the MAC module, the feature extraction module with atten-
tion mechanism, and the feature enhancement module with
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dense cascade network (DCB). Our model achieves conver-
gence without requiring a large amount of dataset, and reaches
convergence for image data after 150 epochs of training. It
exhibits outstanding training efficiency and good portability.
Additionally, the denoising results show that compared with
state-of-the-art algorithms, MSAC-Net can not only produce
a better denoising effect but also has good robustness. The
network achieves a good balance between controlling noise
reduction and detail trade-off.

However, while the model achieves better denoising per-
formance, it cannot be very lightweight, and powerful compu-
tational devices are required for practical applications. In this
section, we propose potential measures to improve the model.
Firstly, we can introduce sparse matrices, pruning, and other
methods. Secondly, we can simplify the network structure by
reducing the number of layers and convolutional kernel size
as much as possible. Finally, we can utilize a series of net-
work compression methods, such as low-rank decomposition,
to make the model lightweight.

In conclusion, the proposed algorithm in this paper demon-
strates that MSAC-Net can provide perceptually satisfy-
ing denoising results and outperforms other state-of-the-art
algorithms in terms of PSNR and SSIM. The flexibility, effi-
ciency, and effectiveness of MSAC-Net offer a new solution
for SAR image denoising.
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