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Optimal Sizing of Recycling Folded Cascode Amplifier for 
Low-Frequency Applications Using New Hybrid Swarm 
Intelligence-Based Technique
Naushad Manzoor Laskar, Koushik Guha, Sourav Nath, K.L. Baishnab, and P.K. Paul

Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, 
India

ABSTRACT
A new efficient design approach for sizing a high-performance 
analog amplifier circuit namely the recycling folded cascode 
(RFC) amplifier is presented. An RFC amplifier is an enhanced 
version of the conventional folded cascode amplifier and achieves 
better slew rate, gain, bandwidth, offset, etc. for same area and 
power budget. Low-frequency amplifiers such as biomedical or 
neural have a demanding requirement of low area, low power, 
and low noise apart from meeting other optimal design specifica-
tions which have inherent trade-off among themselves. As a result, 
manual sizing becomes a computationally inefficient approach. 
Thus, swarm-based optimization techniques have been employed 
to efficiently determine the optimal sizing for the RFC amplifier 
such that the area is minimized while meeting all the optimal 
design specifications considering the constraints. A new hybrid 
whale particle swarm optimization (HWPSO) algorithm is 
employed which takes advantage of the good qualities of both 
the whale algorithm and the PSO algorithm to optimize the area 
with less computational complexity. Simulations and statistical 
analysis have been performed and comparisons with other state 
of art algorithms reveals that HWPSO-based approach achieves 
a minimum circuit area of 21 µm2 with a mean Friedman’s statis-
tical rank of 2.05 while meeting optimal design specifications for 
low-frequency systems. Finally, validation with circuit design tool 
Cadence Virtuoso is done and pre- as well as postlayout analysis 
have been performed which further illustrated a close agreement 
with algorithmic results.

Introduction

The design of high-performance biomedical or brain-machine front end 
involves processing of very low amplitude signals (few µV to mV) which lie in 
the very low frequency range of 100 Hz to few KHz (<20 KHz) (Du and Odame 
2013; Wattanapanitch, Fee, and Sarpeshkar 2007). An amplifier is the first major 
block in these systems and has to be efficiently designed to meet the need of low 
power and low noise, including other major design specifications for optimal 
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performance. Additionally, an important objective in the design is achieving the 
required specifications using a minimum circuit area. This is because biomedical 
or brain-machine interfaces are mostly implanted on human body where only 
a small area would be available for designing the entire system. For minimizing 
the circuit area, the transistor dimensions have to be minimized. However, all 
the major design specifications, i.e., gain, noise, CMRR, etc. are dependent on 
the different transistors dimensions, which cannot be arbitrarily minimized, else 
they would not be able to meet the can be minimum required specifications for 
use in the system (Laskar et al. 2017). In addition to this, all the design 
specifications also have a trade-off amongst themselves. This makes the process 
of manual sizing of transistors an even difficult and computationally inefficient 
process (Puhan, Burmen, and Tuma 2003). As a result, optimization algorithms 
can be employed to achieve the aforementioned objective of minimum area 
while meeting all the design specifications, which can be formulated as design 
constraints (De et al. 2015). Among the various classes of optimization algo-
rithms, nature inspired and swarm-based algorithms have been preferred by 
researchers over the years mainly because of their simplicity, derivative free 
nature and less computational complexity (Holland 1992; Rao 2009).

Swarm-based algorithms are based on food searching mechanisms of birds or 
animals and have been employed by many researchers over the years for circuit 
sizing of various analog circuits to minimize the area (Fakhfakh et al. 2010; Paul 
et al. 2015; Vural and Yildirim 2011). The first application of any swarm-based 
algorithm analog circuit sizing was proposed by Vural and Yildirim (2011) where 
a conventional particle swarm optimization (PSO) was employed for area mini-
mization of a differential amplifier and an OpAmp. In recent times, De et al. 
(2017); Mallick et al. 2016) have employed better and more improved variants of 
PSO and other algorithms in analog circuit sizing of the previously mentioned 
circuits. The analog circuit sizing of folded cascode OpAmp was proposed by Paul 
et al. (2015) by using the human behavior-based PSO. In most recent times, 
modified hybrid variants of PSO have been employed to design a two-stage 
OpAmp with robust bias circuit (De et al. 2018). One major difference in it is 
the use of noise as a design criteria which have been ignored prior to it. In none of 
the reported works, the circuit sizing problem has been performed for amplifiers in 
neural frequency range. Also, none of the reported works have considered opti-
mizing the recycling folded cascode (RFC) circuit, which has better slew rate, gain, 
bandwidth, offset, etc. than a conventional folded cascode amplifier for same area 
and power budget (Assad and Martine 2009). Thus, the proposed work involves 
minimizing the circuit area of a RFC amplifier for meeting the design specifications 
of low frequency applications, which is a major contribution of this work.

Furthermore, from the literature, it is revealed that many researchers have 
used the PSO (Kennedy and Eberhart 1995) and its variants in optimization of 
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amplifiers. However, PSO suffers from stagnation effect and thus many var-
iants of it have been proposed (Chen et al. 2013; Liu et al. 2014). In this work, 
a new hybrid whale particle swarm optimization algorithm (HWPSO) (Laskar 
et al. 2018) has been employed in minimizing the area of RFC amplifier. 
HWPSO has been reported to perform efficiently in case of benchmark 
mathematical as well as electronics design problems with good computational 
efficiency and better approximation to global optima than other state of art 
algorithms (Laskar et al. 2018). The use of this HWPSO algorithm in optimal 
circuit sizing is another contribution of this work. Simulations have been 
performed and comparison with other state of art algorithms (Kennedy and 
Eberhart 1995; Price et al. 1995; Zhang et al. 2003; Mirjalili and Lewis 2016; 
Mirjalili 2016; Mirjalili et al. 2017) have been performed based on simulations 
and using statistical tests (Derrac et al. 2011). The results reveal that HWPSO 
outperforms most of the state of art algorithms by achieving a minimum area 
of 21 µm2 and with a better Friedman’s rank of 2.05. Further validation in 
Cadence circuit design tool has been performed using 180 nm technology and 
prelayout as well as postlayout analysis have been done. The results are in close 
agreement with algorithmic results thereby indicating the effectiveness of the 
approach.

The remainder of the paper is organized as follows. In Section 2, the 
problem formulation for the RFC Circuit is presented. In Section 3, the 
HWPSO algorithm is discussed. Section 4 presents the results and discussion 
and finally in Section 5, conclusions are drawn.

Problem Formulation

The RFC Amplifier is shown in Figure 1. It is a modified version of the 
conventional folded cascode amplifier (Assad and Martine 2009) and uses 
the current recycling concept by utilizing previously idle devices in the signal 
path. This is achieved by splitting the sink transistors M3 and M4 in the ratio 
of K:1, where K is current gain factor. As a result, gain, slew rate, etc. are 
considerably improved. Additionally, for improved matching, i.e., to reduce 
systematic offset two new transistors M11 and M12 as shown in Figure 1. In 
the circuit, instead of NMOS-based drivers, PMOS-based drivers are better as 
they offer lower flicker noise (Laskar et al. 2017). Flicker noise is dominant in 
low frequency and has to be low for minimum noise in low-frequency systems 
(Du and Odame 2013). Thus, in this work, the amplifier design involves 
PMOS-based drivers. A more detailed description on the working of this 
circuit can be studied from Assad and Martine (2009). The total transistors 
in this circuit is 12 and thus the objective function and hence the problem 
statement are defined from Equations (1)-(14). The design vector for the 
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problem is shown in Equation (15). The design specifications is shown in 
Table 1 and the technology constants are the same as shown in Table 2. The 
channel lengths for different transistors used are: L = 1 µm (for M1a, M1b, 
M2a, M2b, M6, and M7), L = 1.25 µm (for M3, M4a, M4b, M5a, and M5b), 
L = 1.5 µm (for M8, M9, M10, and M11), and L = 0.5 µm (for M12 and M13). 
The problem is thus a seven-dimensional problem and hence solved for 

Figure 1. Schematic of RFC OpAmp.

Table 1. Design specifications for use in low fre-
quency systems.

Design criteria Specifications

Slew rate (SR) (V/µs) ≥10
Load capacitance, CL (pF) ≥15
Voltage gain, Av (dB) >40
Unity gain bandwidth, UGB (MHz) ≥2
Minimum ICMR,VCM(min) (V) ≥-1.6
Maximum ICMR, VCM(max) (V) ≤1.6
CMRR (dB) > 60
PSRR (dB) > 60
Power dissipation, P (µW) ≤7
Vout(min) (V) ≥-1.8
Vout(max) (V) ≤1.8
Input referred noise, Sn (f) (V/√Hz) ≤500 n
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minimum circuit are subjected to optimal specifications to be met for use in 
low frequency applications. 

Minimize CF ¼
X12

k¼0
WkLk (1) 
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Table 2. Values of other technology 
constants used.

Specification Values used

VDD (V) 1.8
VSS (V) −1.8
Vtp (V) −0.42
Vtn (V) 0.42
Kn (µA/V2) 355
Kp (µA/V2) 75
AVTHN 5 nm
AVTHP 5.49 nm
Technology node 180 nm
λn 0.04
λp 0.05
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(15) 

The Hybrid Whale Particle Swarm Optimization Algorithm

It is a hybrid swarm-based meta-heuristic algorithm, proposed by Laskar et al. 
(2018), considering the positive aspects of two popular swarm-based algo-
rithm PSO (Kennedy and Eberhart 1995) and WOA (Mirjalili and Lewis 
2016), which results in a better and computationally efficient hybrid algorithm. 
PSO is characterized by two parameters: position and velocity. The optimal 
solution is given by the position of the global best particle. In PSO, the velocity 
and position are updated during every iteration as per Equations (16) and (17) 
respectively. However, it has been reported to be suffering from stagnation 
effect (Chen et al. 2013; Liu et al. 2014). So, to overcome this, it has been 
hybridized with a whale optimization algorithm (WOA) (Mirjalili and Lewis 
2016), which modifies the search mechanism of PSO in such a way that after 
initialization of position of particles, the WOA search principles are employed 
which fine tunes the solution obtained by PSO during the exploration phase 
(Laskar et al. 2018). This is achieved by the concept of iterative hybridization, 
where WOA is executed in a secondary iterations within the primary PSO 
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iterations. The reason WOA is employed is because it reports a very good 
ability of exploration which enables it to reach global optima efficiently. This 
concept has been termed as ‘Forced’ Whale and is implemented using 
Equation (18) and Equation (19). However, as WOA has been reported to 
have poor exploitation ability which leads to poor convergence speed, which 
on the other hand is a positive aspect in PSO.

Thus, to take advantage of it, the implementation of WOA is terminated in 
exploitation phase, which is performed solely using PSO. This is achieved by 
making the WOA secondary iterations dynamically decrease with increase in 
number of PSO’s primary iterations using Equation (20). This phenomenon is 
called ‘Capping’ phenomenon. The use of both these techniques results in 
avoiding of stagnation effect with a good convergence speed, which most of 
the state of art algorithms cannot achieve without trade-off. The computa-
tional complexity of the algorithm is also better than other state of art hybrid 
approaches (Zhang et al. 2012; Ranjini and Murugan 2017) and is given by O 
(K2Td), where K is the primary iterations, T is the number of particles, and “d” 
is the dimension of the problem. A more detailed description regarding the 
working of HWPSO with the search mechanism can be studied from Laskar 
et al. (2018). The flowchart for the HWPSO for use in RFC area minimization 
is shown in Figure 2. 

vkþ1
id ¼ w:vk

id þ c1:rand1: Pbestid � xk
id

� �
þ c2:rand2: Gbest � xk

id
� �

(16) 

xkþ1
id ¼ xk

id þ vkþ1
id (17) 

where, c1 and c2 are acceleration coefficient, Pbest is the local best position 
which gets updated every iteration, whereas Gbest is the global best position 
and w is the damping factor. 

a ¼ 2 � it:
2

im2

� �� �

(18) 

a2 ¼ � 1þ it:
� 1
im2

� �� �

(19) 

im2 ¼ A: itð Þ þ C½ � (20) 

Where, “it” represents primary iteration and im2 is maximum secondary 
iteration for WOA (secondary iteration), “A” and “C” are constants which 
are assigned values based on shape and modes of objective function.
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Results and Discussions

HWPSO is utilized in designing a RFC amplifier for low frequency applications 
such that its circuit area as defined by cost function in Equation (1) is minimized 
and also the constraints defined by Equations (2)-(14) and Table 1 are met. 
Additionally, 1≤ Wk/Lk≤100 has to be met for each of the MOS transistors. 
A population size of 50 has been considered and this a 50*7 population matrix 
is formed while solving the problem. A maximum iterations of 100 is chosen and 

Figure 2. Flowchart of HWPSO algorithm.
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more than 20 independent runs are performed to record the best, worst, mean, 
and standard deviation obtained by HWPSO as well as all the algorithms men-
tioned previously in Section 1 (Kennedy and Eberhart 1995; Storn et al. 1997; 
Zhang et al. 2012; Mirjalili and Lewis 2016; Mirjalili 2016; Mirjalili et al. 2017; 
Saremi et al. 2017). Thus, a total of around 2500 function evaluations has been 
made before recording the optimal data. The results are indicated in Tables 3, 4, 
and 5 respectively. Table 5 illustrates that for the current problem although the 
best value for DA, HBPSO, and WOA are same as HWPSO but their standard 
deviation (SD) is more than HWPSO which signifies that HWPSO is more 
consistent for a long run. The statistical significance of the algorithms is again 
tested for this problem by performing Friedman’s test using fitness values of the 
cost function obtained during every run. It signifies the statistical difference in the 
results of two algorithms (Derrac et al. 2011). The results are indicated in Table 6 
which shows that HWPSO performs the best among all the state of art algorithms 
used having a mean rank of 2.05 for a 5% level of significance. The post-hoc 
analysis is then performed for testing whether the difference between HWPSO’s 
samples and other algorithms samples are statistically different or not using 
Mann-Whitney U test. As HWPSO is ranked 1 in Friedman’s test, it becomes 
the controlling algorithm in Mann Whitney U test and the statistical difference of 
its results with other algorithms is tested. The results are shown in Table 7. From 
Table 7, the p values and U values of the results indicate that the results are 
statistically significant. However, in case of WOA and DA, the p values are too 
large to reject the null hypothesis that the two samples are statistically different 
considering a 5% level of significance. But, the U values of HWPSO are better than 
the U values of both DA and WOA, from which it can be said that HWPSO results 
are statistically better. Based on the comparative results and analysis with other 
state of art algorithms, the effectiveness of HWPSO is illustrated in designing 
a high-performance RFC Amplifier for low frequency with minimum (best) 
circuit area of 21 µm2. The convergence plot shown in Figure 3(a) further indicates 
that HWPSO has a faster convergence than the other state of art algorithms in 

Table 3. Comparative analysis of the best results obtained using HWPSO and other algorithms 
after 20 independent runs.

Design Criteria PSO DE DEPSO HBPSO DA WOA SSA HWPSO

Slew rate (V/s) 10 2.41 2.41 15.07 15.07 15.07 2.41 15.07
Unity gain 

bandwidth (MHz)
3.5 3.5 3.5 0.55 0.55 0.55 3.5 0.55

Voltage gain (dB) 54.32 54.32 54.32 56.11 56.11 56.11 54.32 56.11
VCM(min) (V) −0.294 −0.2937 −0.2937 −1.4 −1.4 −1.4 −0.294 −1.4
VCM(max) (V) 1.4874 1.4874 1.4874 1.11 1.11 1.11 1.4874 1.11
Power dissipation 

(µW)
3.6907 3.69072 3.69072 6.106 6.106 6.106 3.6907 6.106

CMRR (dB) 83.68 83.68 83.68 74.48 74.48 74.48 83.68 74.48
PSRR (dB) 57.19 57.19 57.19 58.50 58.50 58.50 57.19 58.50
Input noise (µV/ 

√Hz)
0.97 0.97 0.97 0.89 0.89 0.89 0.97 0.89

Cut-off frequency 
(KHz)

6.76 6.76 6.76 0.851 0.851 0.851 6.76 0.851

Total area (m2) 2.19e-10 2.19e-10 2.19e-10 2.12e-11 2.12e-11 2.12 e-11 2.19e-10 2.12e- 11
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terms of number of iterations taken to converge in achieving a minimum area. 
The boxplot shown in Figure 3(b) indicates that that HWPSO performs consis-
tently for more than 2000 function evaluations with the optimum values lying 
close to each other and with a low standard deviation. The plot is in accordance 
with the data shown in Table 5.

The results in Table 3 indicates HWPSO-based design is able to achieve the 
highest gain of 56.11 dB with a cutoff frequency of 0.851 KHz which is suitable for 
use in recording local field potentials of neural amplifiers and also in biomedical 
applications such as ECG and EEG recordings. Furthermore, the input referred 
noise is significantly better in comparison to other state of art algorithms with 
values of 0.89 µV/√Hz. This is mainly due to the values of W4a/L4 to W5b/L5 
obtained using the algorithm. However, this results in a minor trade-off with 
a comparatively higher power dissipation of 6.106 µW resulting from increased I0 
as compared to a PSO or DEPSO-based design as indicated in Figure 4. Validation 
of the HWPSO results have been performed by redesigning a RFC Amplifier 
corresponding to the best results in Cadence Virtuoso using 180 nm technology 
parameters and performing pre and post layout simulations. The results are 
shown in Figures 5-10, which are in close agreement with algorithmic results 
with very small deviation in the range of 0.13%–1.9% for different design para-
meters as indicated in Table 8. The layout of the RFC amplifier circuit is shown in 

Table 5. Comparative results of algorithms in terms of best, worst, mean, and standard deviation 
after more than 20 independent runs.

Optimum circuit area (m2) PSO DE DEPSO HBPSO DA WOA SSA HWPSO

Best 2.19 e-10 2.19 e-10 2.19 e-10 2.12e-11 2.12e-11 2.12e-11 2.19 e-10 2.12e-11
Worst 2.19 e-10 2.19 e-10 2.19 e-10 4.86e-11 4.86e-11 4.57e-11 2.19 e-10 4.57e-11
Mean 2.19 e-10 2.19 e-10 2.19 e-10 3.89e-11 3.89e-11 3.75e-11 2.19 e-10 3.34e-11
SD 0 0 0 1.38e-11 1.38e-11 1.35e-11 0 1.34e-11

Table 6. Friedman’s test result considering 
minimum area for 20 independent runs.

Algorithm Mean rank Rank

PSO 6.4500 4
DE 6.6500 5
DA 2.9000 3
WOA 2.1500 2
HWPSO 2.0500 1

Table 7. Mann-Whitney U test result.
HWPSO vs. p value U value HWPSO U value

PSO 0.0000108 0 100
DE 0.0000108 0 100
DA 0.10 28.5 71.5
WOA 0.21 33.5 66.5
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Figure 11. The deviation can be attributed to parasitic effects and certain higher 
order effects neglected in the modeling of the circuit.

Conclusion

In the proposed work, optimal sizing for a CMOS front end RFC amplifier 
for use in low frequency applications such as biomedical, neural 

Figure 3. (a) Comparative analysis of the convergence plot. (b) Box plot for HWPSO for the problem.
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recording, etc. has been presented. For this a new hybrid meta-heuristic 
algorithm namely HWPSO has been utilized. The proposed algorithm 
minimizes the circuit area for the amplifier and also determines the 
optimum values of the design variables within the constraints required 
for them to be used in low-frequency applications. Simulations have been 
performed for more than 2000 evaluation of the objective functions in 
both the cases and the best results are recorded. Statistical analysis and 
comparison with other state of art algorithms illustrated that outperforms 
most of the state of art algorithms. Although performance of HWPSO is 
in par with WOA and DA in terms of minimum circuit area but 

Figure 4. Comparison of various specifications for the algorithms.

Figure 5. Cadence virtuoso simulated gain plot.
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statistically it performs better and with more consistency. Additionally, it 
also has a faster convergence speed. Further validation has been per-
formed by redesigning the circuits corresponding to the best results 
after 20 independent runs in Cadence Virtuoso using 180 nm technology 
parameters and the results are found to be in close agreement with each 

Figure 6. Cadence virtuoso simulated input referred noise plot.

Figure 7. Cadence virtuoso simulated power dissipation plot for HWPSO algorithm.
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other with a deviation of around 1% only, which can be attributed to 
certain higher order effects neglected during the optimization problem 
and constraint formulation. A small deviation arising between pre- and 
post-layout results of different specifications can be attributed to the 
parasitic effects which comes in to play after the layout is done. The 
proposed work can be extended to include offset modeling for the circuit 
solved for minimum offset, which can be considered as a future enhance-
ment to this work.

Figure 8. Cadence virtuoso simulated CMRR plot for HWPSO algorithm.

Figure 9. Cadence virtuoso simulated ICMR plot for HWPSO algorithm.
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Figure 10. Cadence virtuoso simulated PSRR plot for HWPSO algorithm.

Table 8. Validation results for HWPSO and % deviation.

Design criteria

HWPSO-based 
optimization 

results

Cadence virtuoso validation 
results for HWPSO 

(prelayout)

Cadence virtuoso validation 
results for HWPSO 

(postlayout)

% devia-
tion (pre- 

post)

Slew rate (V/µs) 15.07 15.1 15.05 0.19–0.13
UGB (MHz) 0.55 0.556 0.553 1.09–0.54
Gain (dB) 56.11 55.9 55.6 0.37–0.9
VCM(min) (V) −1.4 −1.393 −1.390 0.5–0.71
VCM(max) (V) 1.11 1.116 1.114 0.54–0.36
Power dissipation 

(µW)
6.106 6.098 6.092 0.26–0.22

CMRR (dB) 74.48 74.12 74.07 0.48–0.55
PSRR (dB) 58.50 58.9 59.01 0.67–0.87
Input noise (µV/ 

√Hz)
0.89 0.902 0.905 1.3–1.6

Figure 11. Layout of RFC OpAmp in cadence virtuoso.
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