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Abstract
The characterization of an operator by its eigenvectors and eigenvalues allows us to know its action
over any quantum state. Here, we propose a protocol to obtain an approximation of the eigenvectors
of an arbitraryHermitian quantumoperator. This protocol is based onmeasurement and feedback
processes, which characterize a reinforcement learning protocol. Our proposal is composed of two
systems, a black box named environment and a quantum state named agent. The role of the

environment is to change any quantum state by a unitarymatrix ˆ ˆ= t- U eE
i E where ̂E is aHermitian

operator, and τ is a real parameter. The agent is a quantum state which adapts to some eigenvector of

̂E by repeated interactions with the environment, feedback process, and semi-random rotations.
With this proposal, we can obtain an approximation of the eigenvectors of a randomqubit operator
with average fidelity over 90% in less than 10 iterations, and surpass 98% in less than 300 iterations.
Moreover, for the two-qubit cases, the four eigenvectors are obtainedwithfidelities above 89% in
8000 iterations for a randomoperator, andfidelities of 99% for an operator with the Bell states as
eigenvectors. This protocol can be useful to implement semi-autonomous quantumdevices which
should be capable of extracting information and deciding withminimal resources andwithout human
intervention.

1. Introduction

In the past few years, the symbiosis between quantummechanics andmachine learning into the topic named
quantummachine learning (QML) has been a fruitful area [1–4], either applying classicalmachine learning
techniques to quantum tasks such as quantummetrology [5, 6], quantum state estimation [7, 8], and others
[9–14]; or using quantummechanics to enhancemachine learning algorithms for classical applications [3,
15–21]. Anymachine learning algorithm can be classified into learning frombig data and learning from
interactions.

For thefirst group, we have two classes of algorithms, one of them are the supervised learning algorithms,
which use a previously labeled data set named training data to infer a labeled criterionwhich is used to classify
newdata; a remarkable example is pattern recognition algorithms [22–24]. The other class is unsupervised
learning algorithms. In this case, the training data is not necessary, and the approach is to group the unlabeled
data in different sets, where each set is characterized by themean value of some property of its constituents. The
different groups are constructed to optimize some indicator of the dispersion in each subset with respect to the
value that characterized it, e.g.the standard deviation. An example of these algorithms is the clustering
problem [25, 26].
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For the second group, we have the reinforcement learning (RL) algorithms [27]. Here, one accessible and
manipulable system called agent (A) interacts with another unknown system called environment (E). The
strategy relies onA improving its performance in a specific task ( ) A E, , which depends on the state of the
systemsA andE. This improvement employs the results ofmultiple interactions amongA andE. The general
framework of the RL paradigm is composed of three parts, the policy, the reward function (RF) and the value
function (VF). The policy defines themain steps of the algorithm that we can divide into three steps. First, the
information extraction, which considers the interaction amongA andE, and how to obtain the information
from it. Second, the feedback loop, that specifies the channel used to communicate the information extracted to
A. Third, the decision process, wherewe decide the action onA in order to progress towards the aimed-for goal,
and then start with the information extraction again. TheRF defines the criterion to reward (punish) the actions
which improve (worsen) the performance ofA respect to the task ( ) A E, at each step. Finally, theVF gives us
the global performance of the algorithm, ensuring the convergence of it. One of themost impressive examples of
this paradigm is the recent developing of chess, go and shogimasters players without database [28, 29]. This class
of algorithmsmimic themost primitive formof human learning, commonly named trial and error. Itmeans
that a near-future implementation of quantumartificial intelligencemay apply this paradigm to a quantum
system to enhance a quantum task as themainway to learn. For this reason, the development of the quantum
version of the RL paradigmhas played an important role inQML in recent years [3, 30–34].

A crucial task in physics is the characterization of the different interactions among systems. This
characterization is helpful to evaluate the risks of our actions and act tominimize them. Therefore, any
autonomous artificial intelligencemust have this ability.

In quantummechanics, a physical interaction (observable) is represented by aHermitianmatrix or quantum
operator, which is characterized by its eigenvalues and eigenvectors. The calculation of the eigenvectors and
eigenvalues of a quantum interaction by a classical computer implies that we need to encode the quantum
information into classical bits, which is inconvenient for unknown quantum interactions.Moreover, the
implementation of a full quantum eigensolver [35–38]using near-future quantum computers seems impractical
due to the number of needed resources [39]. The emergence of hybrid classical-quantum algorithms in the past
few years [40–46] opens the door to the development of useful eigensolvers. Nevertheless, these works are
mainly focused on the eigenvalues, eigenvectors, and properties of quantum systems such asmolecules, being
the characterization of a physical interaction less studied.

In this article, we propose a hybrid quantum-classical algorithm to calculate an approximation to the
eigenvector of any quantum interaction described by aHermitianmatrix withminimal resources [47]. In our
proposal, we use single-shotmeasurement and classical communication given by a feedback loop, which
characterizes a RL protocol. Themain goal of this proposal is to obtain a high-fidelity approximation (above
98% for the single-qubit case), withoutmeasuring fidelities or some expectation value, which reduce drastically
the number of iterations of the algorithm, decreasing the effect of noise sources, andwithout human
intervention.We also showhow to extend the algorithm to themultiqubit and high-dimensional situations.
This protocol could be useful to implement semi-autonomous quantumdevices with the capability to decide
using the characterization of an interaction, which is an essential ingredient for the implementation of artificial
quantum intelligence [4] and artificial quantum life [48, 49].

2.Quantum eigensolver protocol

Our proposal is related to recent works about ameasurement-based algorithm to adapt one known state to
another unknownone [50–52]. Here, we define the general framework of our protocol based on theRL
paradigm and then, we explain in details the single qubit case, the single qudit case, and themultiqubit case.

In our protocol, we consider as the agent amanipulable and knownquantum systemdescribed by the state
∣f ñA,0 , which correspond to any initialization of a given physical system. The environment is a black box, which
produces an unknown interaction inside it. This interaction is characterized by an unknownHermitian

operator ̂E, which generates a unitary transformation ˆ ˆ= t- U eE
i E over the quantum systemAwhen it

interacts with the systemE, where τ is a parameter related to the interaction timewith the black-box, e.g.a spin
particle (agent) traversing a regionwith amagnetic field (environment) for a time t∼τ.

The policy is as follows:

• Information extraction: The systemA interacts withE changing its state as

∣ ¯ ˆ ∣ ( )f fñ = ñU . 1A E A,0 ,0

Next, we perform ameasurement process over ∣f̄ ñA,0 in the basis {∣ ∣ }f fñ ¼ ñ-, ,A A d,0 , 1 , where d is the dimension
of theHilbert space ofA and ∣f f dá ñ =A j A k j k, , , .
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• Feedback loop: The information of themeasuring process is communicated to a command center with the
ability to perform a unitary transformation ̂j (quantumgate) over the state ofA in order to change the
possible results in the next information extraction step.

• Decision process: If the outcome of themeasurement process is the state ∣f ñA j, , with ¹j 0, thismeans that

∣f ñA,0 changes when systemA interacts withE, therefore, ∣f ñA,0 cannot be an eigenvector of ̂E. In this case, we

define the unitary transformation ̂j as

ˆ ( )ˆ ˆ ˆ= j j j- - - e e e , 2j
S S Si i iy y j z z j x x j, , ,

where

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣) ( )

f f f f

f f f f

f f f f

= ñá + ñá

=- ñá - ñá

= ñá - ñá

S

S

S

1

2
,

i

2
,

1

2
, 3

x j A A j A j A

y j A A j A j A

z j A A A j A j

, ,0 , , ,0

, ,0 , , ,0

, ,0 ,0 , ,

andjα is a randomangle in the range [ ]p p-w w, , withw the searching range given by the RF.Wenote that ̂j

is a pseudo-random rotation in the subspace expanded by {∣ ∣ }f fñ ñ,A A j,0 , . For this outcomewe define the state

ofA as ˆ ∣f ñj A,0 , and start againwith the information extraction step.

If the outcome of themeasuring process is ∣f ñA,0 , itmeans that ∣f ñA,0 could be an eigenvector of ̂E.We point
out that the eigenvectors of an operator remain constant up to a global phase under the action of a function of
this operator. In this case, we apply the identity operator .Moreover, we keep the same state ∣f ñA,0 and start
againwith the information extraction step. Figure 1 shows a scheme of the policy of the algorithm.

For the RFwe define the reward rate r<1 and the punishment rate p>1. If the outcome of themeasure is
∣f ñA,0 we define ¯ ·=w w r and ¯ ·=w w p in other case. Finally, we renamed ¯=w w for the next iteration of the
algorithm,whichmeans that whenwemeasure ∣f ñA,0 we reduce the searching range, andwe increase it in other
case. The initial value forw is chosen according to the problem.

Aswe can note, the protocol does not need store the states, or all the history of the algorithm, it only needs to

store thefinal operation ˆ ( )
D

N
via storing the parameters that characterize this operation classically.

To ensure the convergence of our algorithm,we define theVF as the value ofw. This implies that, when
w 0, our protocol converges. For a correct choice of r and pwehave that w 0 only if we obtain, in the

measurement process of ∣f̄ ñA,0 , the outcome ∣f ñA,0 many times in a row. Thismeans that ∣ ¯f fá ñ ~ 1A A,0 ,0 ,

therefore ∣f ñA,0 is an approximate eigenvector of ̂E.

Figure 1.Diagram of the protocol. The solid green arrows showflowdirection ofA state. The blue dashed arrows represent the
feedback loops, and the red arrowwith dot endmarks the states in each step. The state ∣ ( )f ñA

k
,0 corresponds to the start point of the kth

iteration, and the state ∣ ( )f ñ+
A
k
,0

1 corresponds to the end point of the kth iteration, that is also the state at the beginning of the ( )+k 1 th
iteration.
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As this is an iterative protocol, we define the following notation for the remainder of the article: any super-
index between parenthesis refers to the iteration of the algorithm, e.g.∣ ( )f ñA,0

4 is the state ofA before the interaction

withE in the fourth iteration. Similarly, ˆ ( )
 j

k
is the unitary transformation defined in the decision process for the

iteration k. As a special case, the super-index ( )1 refers to the initial values, e.g. ( )w 1 represents the initial
searching range.

It is necessary tomention that our algorithmuses one single-shotmeasurement per loop, representing
advantagewith respect to employing an expectation value or the fidelity. The latter imply hundreds of
measurements for a two-level system, being this proposal exposed less time to noise sources. Also, as we use

pseudo-randomoperations ˆ ( )
D

k
, the effect of any noise in the gate can be seen as part of the randomness of the

protocol.

2.1. Single-qubit case
In the single-qubit case, ̂E is described by a 2×2Hermitianmatrix with eigenvectors {∣ ∣ }ñ ñv v,0 1 and
eigenvalues { }l l,0 1 , respectively. As these two eigenvectors are orthonormal, we canwrite

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ∣

∣ ∣ ∣ ( )

a a

a a

ñ = ñ + ñ

ñ= ñ - ñ

b

b

v

v

cos
2

0 e sin
2

1 ,

sin
2

0 e cos
2

1 4

0
i

1
i

where [ ] [ ]a p b pÎ Î0, 2 , 0, and

( ) ( )∣ ∣ ( )ñ = ñ =0 1
0

, 1 0
1

. 5

Wedefine ̂E and ÛE as

ˆ ∣ ∣ ∣ ∣
ˆ ∣ ∣ ∣ ∣ ( )

l l= ñá + ñá

= ñá + ñál t l t- -

 v v v v

U v v v v

,

e e . 6

E

E

0 0 0 1 1 1

i
0 0

i
1 1

0 1

Policy. In this case, wewrite the state ∣ ( )f ñA
k
,0 before the black-box as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ( )( )

( ) ( )
( )f

q q
ñ = ñ + ñjcos

2
0 e sin

2
1 , 7A

k
k k

,0
i k

and the state ∣ ¯ ( )f ñA
k
,0 after E as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∣ ¯ ¯
∣

¯
∣

∣ ∣ ( )

( )
( )

¯
( )

( )
( )

( )
( )

( )

( )

f
q q

f f

ñ = ñ + ñ

=
D

ñ +
D

ñ

j

q qDj

cos
2

0 e sin
2

1

cos
2

e sin
2

8

A
k

k k

k

A
k

k

A
k

,0
i

,0
i

,1

k

k

where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ( )( )

( ) ( )
( )f

q q
ñ = ñ - ñjsin

2
0 e cos

2
1 . 9A

k
k k

,1
i k

For the explicit form ¯( )q k and ¯ ( )f k in terms ofα,β, τ and the eigenvalues of ̂E see appendix A.Moreover, for the

explicit formof ( )Dq
k and ( )Df

k , see appendix B.Now, to perform themeasurement process over ∣ ¯ ( )f ñA
k
,0 , we apply

the basis-rotationmatrix

ˆ ∣ ∣ ∣ ∣ ( )( ) † ( ) ( )f f= ñá + ñáD 0 1 , 10k
A
k

A
k

,0 ,1

in order tomeasure in the basis {∣ ∣ }ñ ñ0 , 1 for all iterations. After themeasurement process, the state ofA is
∣ ( )ñm k , where { }( ) Îm 0, 1k is the outcome of themeasurement with probabilities ( )( ) ( )= D cos 2k k

0
2 and

( )( ) ( )= D sin 2k k
1

2 , respectively. Ifm( k)=0, thenwe transform the state ∣ ∣ ( )fñ  ñ0 A
k
,0 , using thematrix ˆ ( )

D
k
,

and start again the algorithm. If ( ) =m 1k , we transform the state ∣ ∣ ( )fñ  ñ1 A
k
,0 using ˆ ( )sD

k
x, whereσx is the Pauli

matrix x, and apply the pseudo-randomoperator ˆ ( )


k
1 defined by equation (2). Then, after themeasurement

process, we apply over ∣ ( )ñm k the operator ˆ ( )
G

k
0 defined by

ˆ ˆ ˆ ( )( ) ( )= + G D 11
k k

0
1
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where

ˆ ( ) ˆ ˆ ˆ
ˆ ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )s

= - +

= - +

+ 

 
D m D m D

m m

1 ,

1 . 12

k k k k k k

k k
x

1
1

Given that ˆ ( )
D

k
transforms ∣ ∣( )f ñ  ñjA j

k
, (∣ {∣ ∣ }ñ Î ñ ñj 0 , 1 ), we canwrite ˆ ˆ ˆ ˆ( ) ( ) ( ) †= D u D

k k k
1 1 , where

ˆ ( )ˆ ˆ ˆ= j j j- - -u e e e , 13S S S
1

i i iy y z z x x

with ˆ ( )s=S 1 2j j the spin operators, withσj the Paulimatrix j. Then, the operator ˆ ( )+
D

k 1
reads

ˆ ( ) ˆ ˆ ˆ ( )( ) ( ) ( ) ( ) ( )= - ++D m D m D u1 . 14k k k k k1
1

For this case, the RF that defines the value of ( )+w k 1 for each step reads

[( ) ] ( )( ) ( ) ( ) ( )= - ++w m r m p w1 , 15k k k k1

where r and p are the reward rate and punishment rate, respectively, described previously.

When the algorithm converges, we have ∣ ∣ ¯( ) ( )f fñ » ñA
N

A
N

,0 ,0 , whereN is the number of iterations.Moreover, in

this case ˆ ( )
D

N
is an approximation of thematrix that diagonalizes ̂E, that is

ˆ ˆ ˆ ∣ ∣ ∣ ∣ ( )( ) † ( ) l l~ ñá + ñáD D 0 0 1 1 . 16N
E

N
0 1

In order to explore the complete space wemust choosew(1)=1.

2.2. Single-qudit case
In this case, the agent is a d-dimensional systemor qudit, the operator ̂E is described by a d×dHermitian
matrix with eigenvalues {λj}, eigenvectors {∣ }ñvj and j={0,1,2 ,K, d−1}. In the kth iteration of the
algorithm, the state ofA beforeE reads

∣ ∣ ( )( ) åf ñ = ñ
=

-

c j , 17A
k

j

d

j,0
0

1

while for simplicity we choose the initial state ∣ ∣( )f ñ = ñ0A,0
1 . After the interactionwith E, we have

∣ ¯ ˆ ∣ ¯ ∣ ( )( ) ( ) ( )åf f fñ = ñ = ñ
=

-

U c . 18A
k

E A
k

j

d

j A j
k

,0 ,0
0

1

,

Subsequently, we apply the operator ˆ ( ) †
D

k
, which is defined now as

ˆ ∣ ∣ ( )( ) † ( )å f= ñá
=

-

D j , 19k

j

d

A j
k

0

1

,

and perform themeasurement process in the basis {∣ ∣ ∣ }ñ ñ ¼ - ñd0 , 1 , , 1 . After this process, the state ofA is
∣ ( )ñm k , where { }( ) Î ¼ -m d0, 1, , 1k is the outcome of themeasurement process. In this case the decision

process applies the operator ˆ ( )
G

k
0 defined by equation (11), but with

ˆ ( ˆ ) ˆ

ˆ ˆ ˆ ( )( ) ( ) ( )

( )

( )å

d

d

= - +

=+

=

-

  





D D

,

, 20

m

k

j

d

j m j
k k

0,

1

0

1

,

k

k

where

ˆ (∣ ∣ ∣ ∣) ( )å= ñá + ñá
=

-

 j j0 0 21
j

d

1

1

with ˆ ( )
( )m

k
k as defined in equation (2) and ˆ ( )

= k
0 . Also in this case ˆ ˆ ˆ ˆ( ) ( ) ( ) †= D u Dj

k k
j

k
, where

ˆ ( )ˆ ˆ ˆ= j j j- - -u e e e , 22j
S S Si i iy y

j

z z
j

x x
j
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and

(∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)

(∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)

(∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)

( )

= +

= - -

= -

S j j

S j j

S j j

1

2
0 0 ,

i

2
0 0 ,

1

2
0 0 ,

23

x
j

y
j

z
j

^

^

^

therefore,

ˆ ˆ ˆ ( )( ) ( )
( ) ( )å d=+

=

-

D D u . 24k

j

d

j m
k

m
1

0

1

, k k

The state ofA for the next iteration reads ∣ ˆ ∣( ) ( ) ( )f ñ = ñ+ G mA
k k k
,0

1
0 .

Finally, the RF that updates the value of the searching range is given by

[( ) ] ( )( ) ( )( )d= - ++w r p p w . 25k
m

k1
0, k

Once the algorithm converges, we have that

∣ ˆ ∣ ( )( ) ( ) ( )f fñ = ñ+ D , 26A
N N

A,0
1

,0
10 0

is an approximate eigenvector, therefore

∣ ∣ ˆ ∣ ∣ ( )( ) ( )f fá ñ ~+ + 1. 27A
N

E A
N

,0
1

,0
10 0

In order tofind another eigenvector of ̂E , we start again the algorithm for the iteration +N 10 , i.e.
( ) ( ) p= =+w w 2N 1 10 , but now the state beforeE is given by ∣ ˆ ∣( ) ( ) ( )f fñ = ñ+ DA

N N
A,1

1
,1

10 0 .We redefine equation (23) as

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣)

ˆ (∣ ∣ ∣ ∣) ( )

= ñá + ñá

= - ñá - ñá

= ñá - ñá

S j j

S j j

S j j

1

2
1 1 ,

i

2
1 1 ,

1

2
1 1 . 28

x
j

y
j

z
j

Thus, we can calculate the operator ûj as in equation (22).
The decision process changes as

ˆ ˆ ˆ ( )( ) ( )= + G D , 29
k k

1
1

1

where

ˆ ( ˆ ) ˆ

ˆ ˆ ˆ

ˆ (∣ ∣ ∣ ∣) ( )

( ) ( )

( )

( )å

å

d

d

= - +

=

= ñá + ñá

+

=

-

¹

  





D D u
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and ˆ ˆ= = u u0 1 . Finally, the RF reads

[( ) ] ( )( ) ( )( ) ( )d d= - - ++w r p p p w . 31k
m m

k1
1, 0,k k

These changesmean that we perform the protocol in the subspace orthogonal to ∣ ( )f ñA,0
1 .When the algorithm

converges again, afterN1 iterationsmore, we have that the states ˆ ∣( ) ( )f ñ+
D

N N
A,0
10 1 and ˆ ∣( ) ( )f ñ+

D
N N

A,1
10 1 are

approximate eigenvectors. Therefore, to obtain the next eigenvector we perform the algorithm again but in the
subspace orthogonal to {∣ ∣ }( ) ( )f fñ ñ,A A,0

1
,1

1 , and so on. At = + + + -N N N N... d0 1 2 iterations we have that the

states ∣ ˆ ∣( ) ( )f fñ = ñDA j
N N

A j, ,
1 with = ¼ -j d0, 1, , 1are the d eigenvectors of ̂E.

2.3.Multiqubit case
For this case, we can suppose that the systemA is a qudit state, where now the states ∣ ñj of the basis, correspond to
the binary representation of jwith ( )log d2 digits. For example, for d=16we have 4 digits, where each of them
represents the state of a qubit; then ∣ ∣ñ = ñ5 0101 . Also, we can produce the different operators ûj using
controlled-not gates and single-qubit rotations [53]. Therefore, we canmap this problem to the qudit case
obtaining the same algorithm as in the previous case.
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Aswe can see from this section, our protocol does not need to encode quantum information in a classical
processor, being advantageouswith respect to classical algorithms that need to characterize the quantum
interactions by quantum tomography. The latter imply hundreds ofmeasurements of the quantum system,
using in this processmore resources than the entire algorithmproposed.Moreover, as our algorithmfinds the
eigenstate statistically, it is simpler than a full quantum algorithm that finds the eigenstates exactly, being our
protocol experimentally feasible. The [51, 52] show the experimental implementation of an algorithm that
employs the same basics steps inwhich our current algorithm is based, for the case of quantum states, instead of
quantumoperators, opening the door to the implementation of this work.

3.Numerical results

It is convenient to define the following quantities for the numerical analysis of the protocol,
·n n=  =r p p r , with r (p) the reward (punishment) rate, the total number of rewards nr and the total

number of punishments np in the algorithm. TheVF of our algorithm is the value of ( ) =w r pN n nr p where
= +N n nr p are the total number of iterations. Also, we can rewrite

( )( ) n= -w r , 32N n n nr p p

where the convergence condition is given by ( ) w 1N . If n < 1, we see from equation (32) that the convergence
condition can be satisfied even if ~n np r , which implies that the protocol does not necessarily converge to the

eigenstates of ̂E. If ν=1, we have that ⟺( ) w n n0N
r p. For ν>1, the algorithm converges whenever

n nr p.Moreover, when ν is larger, the algorithmneedsmore iterations to converge, but nevertheless it
achieves largerfidelities. This is the exploration versus exploitation balance known inRL.Here, we perform the
simulation for a single- and two-qubit case for different values of ν and r. Remember that for all cases we choose

Figure 2.Numerical results for themean fidelity ( ) k0 given by equation (33)where ̂E corresponds to a randomHermitianmatrix
acting over a single qubit.We employ = 1000.
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w(1)=1. Also, for simplicity we choose ∣ ∣( )f ñ = ñ0A,0
1 for the single-qubit case and ∣ ∣( )f ñ = ñjA j,

1
bin for the two-

qubit case, where jbin is the binary representation of j, e.g.∣ ∣( )f ñ = ñ10A,2
1 .Moreover, ˆ ( ) = D

1
for all cases.

Finally, as the unitary operator ûj given by equation (22) depends on pseudo-randoms angles, we perform
many times the algorithm, defining themeanfidelity  and themean searching range as

ℓ( ) ∣ ∣ ˆ ∣ ∣

( ) ( )

ℓ

( )

( )

å

å

= á ñ

=

=

=











k D j

k w

max
1

,

1
, 33

j
i

E i
k

i
i
k

1

1

where ℓ∣ ñE is theℓth eigenvector of ̂E, the index i refers to the ith repetition of the protocol and  is the total
number of repetitions. In all subsequent cases we choose = 1000.

3.1. Single-qubit case
For the general performance of our protocol, we start with a ̂E described by a randomHermitianmatrix.
Figure 2 shows themean fidelity ( ) ( )= k k0 1 for different values of the reward rate r, and the parameter ν.
From thisfigure, we can see that for r=0.9 and ν=2, we obtain ( ) > k 0.980 with k<300. Also, in all cases
we have ( ) > k 0.900 for k<10. Itmeans that using a reduced number of iterations we can obtain good
fidelities for the eigenvector of a completely random single-qubit operator. On the other hand, we observe that
when r and ν are larger, themaximumvalue of ( ) k0 increases, butwe needmore iterations for the convergence
of the algorithm. Figure 3 shows themean searching range ( ) k for the same cases. From thisfigure we can

Figure 3.Numerical results for themean searching rate ( ) k given by equation (33)where ̂E corresponds to a randomHermitian
matrix acting over a single-qubit.We employ = 1000.
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clearly see how the algorithmneeds less iterationswhen r and ν decrease, with the extreme case of r=0.6,
ν=1, where the algorithm converges before 70 iterations.

Now,we consider a particular example ˆ ˆ s= = SE x x
1

2
. In this case, the distance in the Bloch sphere

between ∣ ñ0 and the eigenstates of ̂E is the largest possible. Figure 4 shows that our algorithm converges with
few iterations to good approximations of the eigenvectors, we can see that we obtain the eigenvectors with
fidelity above 98% in 400 iterations, for the case ν=2 and r=0.9.

Aswe can see, themaximumfidelity for the case ˆ ˆ= SE x has decreasedwith respect to the randomone. This
is because the distance between ∣ ñ0 and the eigenvectors of Ŝx is larger than the distance between ∣ ñ0 and the

eigenvectors of ̂E in the random case, therefore, the protocol has worse convergence.

3.2. Two-qubit case
This case is analogous to the single-qudit case with d=4. First, for a general performance, we consider ̂E as a
random two-qubit operator.Moreover, we choose = 1000 and calculate themeanfidelity ( ) kj and the
mean searching rangej given by equation (33). Figure 5 shows the numerical calculation for r=0.9 and
ν={1.5,2}. It shows again that for small ν the convergence is faster but themaximumvalue of j is smaller.
Furthermore, with ν=2we need 8500 iterations such that the four approximate eigenvectors converge.With
ν=1.5, we only need 6000 iterations. Nevertheless, for ν=2we obtain > 0.89j for all j, with even 2 and 3

up to 0.93. In the other case, with ν=1.5, themaximumvalues are ~ 0.880 , and { } <  , , 0.921 2 3 . Also,
we can see from the evolution of ( ) k that the number of iterations needed for the convergence is smaller each
time that the algorithm starts again to approximate the next eigenvector, that is,N0>N1>N2. Finally, we
consider as special case ˆ ˆ= BE , where B̂ is an operator given by

ˆ ∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣) ( )f f f f y y y y= ñá - ñá + ñá - ñá+ + - - + + - -B 2 , 34

Figure 4.Numerical results for themean fidelity ( ) k0 and themean searching rate ( ) k given by equation (33), where ˆ ˆ= SE x .We
employ = 1000.
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with

∣ (∣ ∣ )

∣ (∣ ∣ ) ( )

f

y

ñ = ñ  ñ

ñ= ñ  ñ





1

2
00 11 ,

1

2
01 10 , 35

themaximally-entangled Bell states. Figure 6 shows the performance of our protocol for this case.We can see
thatwe obtain high fidelities ( > 0.99j )with only 1000 iterations to approximate the four eigenvectors.We
obtain this performance due to the fact that our algorithm is sensitive to the number of the product states
involved in each subspace (dimension of the subspace) and not to the total dimension of the operator ̂E . In this
case, the operator B̂ is block-diagonal, where one block acts in the subspace {∣ ∣ }ñ ñ00 , 11 and the other in
{∣ ∣ }ñ ñ01 , 10 . This implies that the present case is similar to two independent single-qubit cases. Infigure 6, we
can see that from k=1 to k=500we approximate the eigenstates of the first block, that is ∣f ñ at the same time,
and from k=501 to k=1000we approximate the eigenstates of the second block ∣y ñ , where both cases have a
performance similar to the single-qubit case.

4. Conclusions

Wepropose and analyze an approximate quantum eigensolver based onRLwithminimal resources. This
proposal can be classified as a hybrid classical-quantum algorithm, such thatwe use a classical optimization
algorithm to change a quantum system to improve a quantum task using a feedback loop combinedwith
partially-randomunitary gates. This is in contrast with other hybrid algorithms thatmeasure the fidelities or
some expectation value in each step. Therefore, our proposal is advantageouswith respect to the usual hybrid
algorithms, in the sense that our protocol needsminimal storage to save only the last step of the algorithm and

Figure 5.Numerical results for themean fidelity ( ) kj and themean searching rate ( ) k given by equation (33), where ̂E is a
random two-qubit operator.We employ = 1000 and r=0.9.
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employs just one single-shotmeasurement per iteration, instead offidelities or expectation-value
measurements, which decrease the effect of the source of noise.Moreover, our protocol considers pseudo-
random two-level rotations, such that it is not necessary to implement high-fidelity operations, because the
randomness of the algorithm absorbs the errors of the gates. For this reason, our algorithmwould be
experimentally feasible in almost any current quantumplatform.

Additionally, we validated our proposal with numerical calculations of four different choices of the operator

̂E, random single-qubit operator, Ŝx operator, random two-qubit operator, and B̂ operator defined by
equation (34), obtaining as a general rule that our algorithm reaches higherfidelities for the approximate
eigenvectors for large values of ν and r, but the convergence in this case is slower. This is related to the balance
between exploration and exploitation typical fromRL algorithms.Moreover, our algorithm is sensitive to the

size of the different subspaces expanded by product states and not to the size of the total space of the operator ̂E .
This is the case showed infigure 6, where the eigenvectors are themaximally-entangled Bell states.We point out
that, in order to improve the performance of the protocol in future extensions, it could be interesting to study
dynamical reward rates (r) and dynamical parameter ν.

Finally, due to the simplicity,minimal resources employed by our protocol, and the fact that we need only a
basic classical processor (command center) capable to performpseudo-random rotations, it can be useful for the
development of near future semi-autonomous quantumdevices, whichwill have tomake decisions with
incomplete information obtained by interactionwith the external environment.
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AppendixA. Explicit formof ¯ ( )q k and ¯ ( )f k

Here, we further clarify the protocol developed in themain text.

Figure 6.Numerical results for themean fidelity ( ) kj and themean searching rate ( ) k given by equation (33). Here, ˆ ˆ= BE ,
which is described by equation (34).We employ = = r1000, 0.9, and ν=2.
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From equation (4), we have
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Replacing equation (7)we obtain
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Bymeans of the definition of ∣ ñv0 and ∣ ñv1 given by equation (4), we obtain
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We rewrite the eigenvalues asλ0=δ−λ andλ1=δ+λwhere δ=(λ1+λ0)/2 andλ=(λ1−λ0)/2.
Then, we rewrite equation (A.4)up to a global phase as
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This state has the form
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Finally, up to a global phase, the state given by equation (A.7) can bewritten in the formof equation (8),
where
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Appendix B. Explicit formof ( )Dq
k and ( )Dj

k

From equations (7) and (9)wehave
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Replacing this expression in the first line of equation (8), we obtain
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