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ABSTRACT
Game theory has been widely recognized as an important tool in
many fields, which provides general mathematical techniques for
analyzing situations in which two or more individuals make
decisions that will influence one another’s welfare. This paper
presents a game-theoretic evolutionary algorithm based on
behavioral expectation, which is a type of optimization approach
based on game theory. A formulation to estimate the payoffs
expectation is given, which is amechanism of trying tomaster the
player’s information so as to facilitate the player becoming the
rational decision maker. GameEA has one population (players
set), and generates new offspring only by the imitation operator
and the belief learning operator. The imitation operator is used to
learn strategies and actions from other players to improve its
competitiveness and applies it into the future game, namely
that one player updates its chromosome by strategically copying
some segments of gene sequences from the competitor. Belief
learning refers to models in which a player adjusts its own
strategies, behavior or chromosome by analyzing current history
information with respect to an improvement of solution quality.
The experimental results on various classes of problems using
real-valued representation show that GameEA outperforms not
only the standard genetic algorithm (GA) but also other GAs
having additional mechanisms of accuracy enhancement.
Finally, we compare the convergence of GameEA with different
numbers of players to determine whether this parameter has a
significant effect on convergence. The statistical results show that
at the 0.05 significance level, the number of players has a crucial
impact on GameEA's performance. The results suggest that 50 or
100 players will provide good results with unimodal functions,
while 200 players will provide good results for multimodal
functions.

Introduction

Current studies address the excessive sensitivity of Evolutionary Algorithms
(EAs) to control parameters, premature convergence and slow computation
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speed, but capturing historical information and providing a predictive
adaptive response to evolution requires further study. Recent research
suggests that predictive adaptive responses can lead to differential develop-
ment among initially similar individuals as well as provide an increase in
evolutionary fitness, which is an adaptive change in long-term behavior or
development due to a triggering environmental stimulus. EAs employ a set
of nature-inspired computational methodologies and approaches to solving
complex real-world problems that cannot be perfectly addressed using
mathematical or deterministic algorithms. Several approaches have been
proposed to model the specific intelligent behaviors, such as Ant Colony
Algorithm (Dorigo and Gambardella 1997) based on the behavior of ants
searching for food; Firefly Algorithm, inspired by the flashing behavior of
fireflies (Yang 2010); Fish Swarm Algorithm, inspired by the collective
movement of fish and their various social behaviors (Li, Shao, and Qian
2002; Neshat et al. 2014); Artificial Bee Colony (Karaboga and Basturk
2007); Cuckoo Search (Yang and Deb 2009); Multi-objective evolutionary
algorithm based on decision space partition (Yang et al. 2017); and
Artificial Immune System (Woldemariam and Yen 2010). Some other
types of algorithms, such as neural computation (Maass, Natschläger, and
Markram 2002) or brainstorming algorithm (Shi 2011), are inspired from
the advanced activities of the human brain, which focus on the intelligence
of cell behaviors. Although these types of algorithms do not guarantee the
detection of the optimum value for a problem, they are sufficiently flexible
to solve different types of problems due to their qualities of global explora-
tion and local exploitation. However, the previous studies concentrated on
the simulated biologic behavior rule or biological mechanism.

Game theory applies to a wide range of behavioral relations, and is now an
umbrella term for the science of logical decision making in humans, animals,
and computers (Ram et al. 2014). Generally speaking, the game typically
involves several players, strategies or actions, orders, and payoffs, which are
similar to evolutionary algorithms’ individuals, genetic operators (selection,
crossover, and mutation), and fitness. Both of them are population-based
evolutions. On the game, the strategy selection of players is based on the
payoffs expectation, and there are several learning methods to improve the
players’ chances of obtaining gains, such as reinforcement learning (Madani
and Hooshyar 2014), belief learning (Spiliopoulos 2012), imitation (Friedman
et al. 2015), directional learning (Nax and Perc 2015; Simon et al. 1999), and
rule learning (Stahl 2000). The player makes a decision based on the under-
standing of the other players’ action, and the player will become increasingly
smart naturally. If the player is a candidate solution, it is possible to find the
global optimal solution as the game goes on. Evolution through natural
selection is often understood to imply improvement and progress, and for
studying frequency-dependent selection, game-theoretic arguments are more
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appropriate than optimization algorithms (Nowak and Sigmund 2004).
Replicator and adaptive dynamics describe short- and long-term evolution
in phenotype space and have found applications ranging from animal beha-
vior and ecology to speciation, macroevolution, and human language.
Evolutionary game theory is an essential component of a mathematical and
computational approach to biology. Additionally, recent research
(Rosenstrom et al. 2015) has suggested that predictive adaptive response
can lead to differential development among initially similar individuals,
and increase evolutionary fitness, which is an adaptive change in the long-
term behavior or development due to an environmental exposure that trig-
gers it. Meanwhile, there is evidence that using a learning strategy can win
against the top entries from the Othello League without the explicit use of
human knowledge (Szubert, Jaskowski, and Krawiec 2013). With the motiva-
tion of the above-mentioned facts, we try to investigate a novel computa-
tional algorithm – the game evolutionary algorithm – which is an
optimization approach based on behavioral expectation.

The remainder of this paper is organized as follows. Section II presents
some related works. Section III describes the fundamentals of our proposed
algorithms. Section IV details the proposed algorithms’ procedures. Section V
presents the comprehensive experiments and analysis. Additional experiments
with different players’ size are conducted and analyzed in Section VI. Finally,
Section VII concludes this paper and threads some future research issues.

Related works

Evolutionary Game Theory (Kontogiannis and Spirakis 2005) is the study of
strategic interactions among large populations of agents who base their deci-
sions on simple, myopic rules, which is to determine broad classes of decision
procedures, which provide plausible descriptions of selfish behavior and
include appealing forms of aggregate behavior. It seems very attractive to
employ the game theory to improve the performance of some popular evolu-
tionary algorithms. Game-theoretic differential evolution (GTDE)(Ganesan,
Elamvazuthi, and Vasant 2015) was developed from differential evolution
(DE) by employing cooperative and defective strategies. The defective strategy
was used to reduce the influence of the child vector on the principal parent at
each generation and to modify the relation to increase the degree of mutation
for the child vector, whereas the cooperative strategy was used to reduce or
increase the mutation factor of the child. Although the computation time of
GTDE is double that of DE, the performance of GTDE was enhanced using
knowledge from evolutionary game theory. Particle swarm optimizer based on
evolutionary game (EGPSO) (Liu and Wang 2008) was developed by connect-
ing game theory with the classical particle swarm optimization (PSO). The
choosing strategies in evolutionary games were used to map particles who hold
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current optimal solution in PSO algorithm to players who aim to pursue
maximum utility, and replicator dynamics were employed to model the beha-
vior of particles, and a multi-start technique was used to surmount premature
convergence. An evolutionary algorithm based on Nash dominance for equili-
brium problems with equilibrium constraints (Koh 2012) was proposed by
redefining selection criteria. The Nash dominance was used to find the Nash
equilibrium, which is the largest label. The game-theoretic approach for
designing evolutionary programming is characterized by a mixed strategy
using Gaussian and Cauchy mutations (He and Yao 2005). Although the
framework of the algorithm has no difference with the popular evolutionary
programming, its mutation operation is very similar to the game strategy. With
an ever-increasing complexity in design engineering problems, game strategies
have been proposed as one of the key technologies to save CPU usage and
produce high model quality due to their efficiency in design optimization (Lee
et al. 2011; Periaux et al. 2001), in which game strategies are hybridized and
coupled to multiobjective evolutionary algorithms (MOEA) to improve the
quality of solutions.

Game theory is also increasingly used to solve complex problems.
Considering the problem of spectrum trading, with multiple licensed
users selling spectrum opportunities to multiple unlicensed users, a
game-theoretic framework is proposed to investigate the network
dynamics under different system parameter settings and under system
perturbation (Niyato, Hossain, and Zhu 2009), which is designed for
modeling the interactions among multiple primary users and multiple
secondary users. The theory of evolutionary game is used to model the
evolution and the dynamic behavior of secondary users, and a non-coop-
erative game is formulated to model the competition among the primary
users. An evolutionary mechanism is designed by introducing the Nash
equilibrium (Wei et al. 2010) based on a practical approximated solution
with two steps for the quality of service constrained resource allocation
problem. First, each player solves its optimal problem independently by
using the proposed binary integer programming method. Second, a
mechanism to change multiplexed strategies of the initial optimal solutions
of different players is employed to minimize their efficiency losses. The
author claims that the Nash equilibrium always exists if the resource
allocation game has feasible solutions. Concentrating on the optimality
of the wireless network, the evolutionary game framework allows an
arbitrary number of mobiles that are involved in a local interaction to
extend on the evolution of dynamics and the equilibrium (Jiang et al. 2015;
Tembine et al. 2010). To explain the evolution of structured meaning-
signal mappings on why the evolutionary dynamics is trapped in local
maxima that do not reflect the structure of the meaning and signal spaces,
a simple game theoretical model is used, which can show analytically that
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when individuals adopting the same communication code meet more
frequently than individuals using different codes – a result of the spatial
organization of the population – then advantageous linguistic innovations
can spread and take over the population (Fontanari and Perlovsky 2008).
The game theoretic trust model (Mejia et al. 2011) for the on-line dis-
tributed evolution of cooperation adapts effectively to environmental
changes, but it relies on a bacterial-like algorithm to let the nodes quickly
learn the appropriate cooperation behavior. A game-theoretic approach to
partial clique enumeration(Bulo, Torsello, and Pelillo 2009) has proved its
effectiveness, which can avoid extracting the same clique multiple times by
casting the problem into a game-theoretic framework. Recently, a constant
model hawk-dove game (Misra and Sarkar 2015) was designed to ensure
prioritizing the local data-processing units in Wireless Body Area
Networks during medical emergency situations. Aimed at obtaining the
mechanism of behavior game, the game evolutionary model (Yang et al.
2016) employed to evaluate the payoffs expectation was established.
Otherwise, the game theory has been used in many other fields like data
mining (Qin et al. 2015) and knowledge discovery (Hausknecht et al.
2014).

Fundamental of GameEA

Origin of thought

Consider a serious study of the game theory. First, the players make a decision
based on the information possessed and use this decision to gain optimal
payoffs. Under non-cooperative gaming, John Nash proved that one player
can gain worse payoffs except for employing the best strategy among the
strategies set if the other participants do not change their decisions. It means
a rational player will reach the consistency prediction by analyzing the informa-
tion. Second, a repeated game is a massive form of a game, which is composed
of some numbers of repetitions of some stage of the game. It reveals the idea
that one person will have to take into account the impact of his current action
on the future actions of other players. It can be proved that every strategy that
has a payoff greater than the minimal payoff can be a Nash equilibrium, which
is a very big set of strategies. The payoff is the evaluative criteria when the
players chose which kind of strategy is to be used, and the payoff of a repeated
game is a distinguished form of the one-shot game. Each stage of the repeated
game gains payoffs, and if it is assigned to each turn of the game, it leads to a
number of one-shot games. Thus, the repeated game’s payoffs are related to the
used strategies and the current total payoffs. If there is a base game G (static
game or dynamic game), T is the times of repeating game, and the game results
can be observed before starting a new G, such kind of event is called a
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T-repeated game of G, marked as G(T). Usually, there is a presupposition that
players act rationally and make decisions intelligently, but human behavior
often deviates from absolute rationality and absolute intelligence, and this
conception of learning leads to the game theory.

In short, rationality and intelligent players can have an insight into the
optimal strategies by grabbing and analyzing perfect information so as to
gain the highest payoffs. Moreover, all participants’ final payoffs are related
to stage gains in a repeated game. participants can scan historical stage
information, and choose a suitable decision strategy, which can be varying
equilibrium strategies for long-term interests. Additionally, in practice, learn-
ing is an important approach to gain a competitive edge when the player is
lacking in rationality and intelligence. Based on these facts, we propose a new
computational intelligent algorithm based on the game theory.

Model of game evolution

In an extensive form, a repeated game can be presented as a game with
complete but imperfect information using the so-called Harsanyi
Transformation (Hu and Stuart 2002). This transformation introduces to the
game the notion of nature’s choice. Hence, when a challenger competes with
opponents, the opponents are considered a part of nature; therefore, the
challenger is subject to nature’s choice. Actually, the challenger doesn’t know
what nature’s move was; he/she only knows the probability distribution under
the various options and the winner’s payoffs are known to every player. In
traditional consideration, the player’s action or strategy is the most important
factor, but with nature’s choice we can find some difference. First, the player’s
stable payoffs constitute winning the opponent and the other challenger.
Second, if the player accepts the game, irrespective of whether it is lost or
won, he/she can learn something from the opponent, which will indirectly
influence future competition. Third, if the player gives up competing, he/she
can improve by self-training. Let w1 and w2 stand for the payoffs from fighting
with nature’s choice and the gains from self-training, respectively; then nature
has a probability of p to choose a weaker rival, thereby providing a stronger
opponent with a probability of 1-p. That nature’s choice has the probability p of
selecting a weaker opponent results in different performances for different
challengers and even for a homogenous challenger at different stages; thus,
the payoffs w1 and w2 are indeterminate and are not calculated in the simplified
matrix of payoffs.

When the challenger is not sure about the competitiveness of the compe-
titor, the best way is using the mathematical expectation to estimate the
payoff for a risk preference player. If the challenger decides to fight with
nature’s choice, its expectation payoffs can be presented as (1-p)×w1 +
p×(w1 +1); otherwise, if the challenger gives up the competition, the
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expectation payoffs can be calculated by using (1-p)×w2 + p×w2. Thus, the
total expectation payoffs E can be calculated using (1), and by substituting
w = w2-w1 into Equation (1), we can get Equation (2).

E ¼ ð1�pÞw1 þ pðw1 þ 1Þ � ð1� pÞw2 � pw2

¼ pð1þ w1 � w2Þ � ð1� pÞðw2 � w1Þ (1)

E ¼ pð1� wÞ � ð1� pÞw (2)

We use Equation (2) as the criterion of one challenger, namely that if E ≤0,
then the challenger gives up the competition; otherwise, if E >0, then the
challenger has to fight with a random selected sample (nature’s choice).

Learning strategies

The traditional game theory does not discuss how to achieve equilibrium.
In equilibrium reasoning, it is assumed that participants either are rational
enough or can approximate equilibrium by learning (Colman 2003).
Considering that a perfectly rational player exists only in ideal state,
learning is very important for the player in the wrestling model. In our
research, we design some learning strategies for the wrestling model,
which includes imitation and belief learning. Imitation means learning
strategies and actions from other players to improve one’s competitiveness
and then apply it to the next game, namely that one player updates his/
her own chromosome by copying some segments of the gene sequences
from the opponents, which are characterized by positive feedback. In the
context of learning in games, belief learning refers to models in which
players are engaged in a repeated game and each player adjusts his/her
own strategies, behavior, or chromosome by analyzing current history
information with respect to an improvement of payoffs and competitive-
ness against the next-period opponent behavior.

Proposed algorithm: GameEA

Framework of proposed algorithm

For the convenience of description, we define some symbols shown in
Table 1. Figure 1 presents the general framework of GameEA. At the
beginning, the initialization procedure generates N initial players and
initializes each player’s active and passive payoff of game. Within the
main loop, in case the given evolution generation is not met, for each
player as a challenger, choose an opponent for the challenger, and the
challenger makes a decision by carefully checking the selected player, then
the imitation or the belief learning procedure is employed for offspring
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generation. Then the offspring is used to update the so-called best solu-
tion. GameEA has only one population (players set), and generates new
offspring only by the imitation operator between the challenger and the
opponent and the belief learning operator by self-training strategies. In
the following paragraphs, the implementation details of each component
in GameEA will be detailed.

Initialization

The initialization procedure of GameEA includes the following three aspects:
the decision space and the objective function; the initialization of players of
set I; and the passive and active payoffs of each player that are assigned to
zero. For the function optimization problems, the initial players in set I are

Figure 1. General framework of GameEA.

Table 1. Definition of symbols.
Symbol Meaning Symbol Meaning

Tmax Maximum of game generation N Size of players/population
W1 Payoffs weight W2 Losses weight
P1, Imitation probability P2 Learning probability
P3 Speculative probability n Dimension of problem
t tth game generation Ha Total number of speculations
Hs Total number of successful speculations Ii ith player/individual
Ii
a Active payoff of game of Ii Ii

p Passive payoff of game of Ii
Ii°
bj Objectives of Ii Ii

v Total payoffs of Ii
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randomly sampled form the decision space Rn via a uniform distribution
using real-valued representation, and each player’s objective value is calcu-
lated by using the objective function.

Imitation operator

According to the Harsanyi Transformation, nature should perform its duty –
provide a choice before applying the imitation procedure – which relates to
line 6 of Figure 1. Equations (2) and (3) are used to calculate the expectation
payoffs of Ii:

EðIiÞ ¼ μW1
Iai þ Ipi

Iai þ Ipi þ Iaj þ Ipj

 !
� ð1� μÞW2

Iaj þ Ipj
Iai þ Ipi þ Iaj þ Ipj

 !
(3)

where μ =random(). Considering that the players are not intelligent enough
with zero total payoffs at the beginning like the human origins stage, we let
the player imitate the selected player with probability P1, which is a very big
number just like 0.9 and allowed the chromosome to remain unchanged,
namely that the weak challenger Ii has to compete with the selected Ij, and
then imitate some useful information from others by using operator imita-
tion (Ii, Ij), but it has the probability of doing nothing at the current turn of
the game to survive some schema. This is special strategy whereby various
genes can either change or remain unchanged when the player does not
know much about others.

The calculation of payoffs expectation (line 9 of Figure 1) is very signifi-
cant, which is a mechanism of trying to master the other’s information
because the total payoffs indicate one’s historic strategies. Such a mechanism
allows the player become more rational, and helps the player make a rational
decision. It seems that players often form an aspiration based on their
experiences with different actions and opponents, and payoff rewards are
reinforcing or deterring depending on who they are compared to, and that
decision makers adjust their aspirations as they gain experience (Borgers and
Sarin 1997).

Figure 2 shows the general procedure of imitation. The objective value
comparison between the pair of players (line 1 of Figure 2) is the basis of the
historic performance, but the comparison result impacts both the active and
passive payoffs. We use a temporary variable to breed new individuals based
on some imitation strategies according to the historic action, and the off-
spring replaces its parent only when the offspring is better than its parent so
as to facilitate global convergence.

In the real word, if one person feels that some others have competitive skills,
perhaps he/she will try to learn such skills, but if they do not have that, the final
decision is effected by the attraction of the skills and the subjective initiative.
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Inspired by that, we use a random value, i.e. random(), to present the degree of
subjective initiative and the ratio of succeed imitation number (Ha+1) and the
total number of imitations (2Hs+1). If random()*(Ha+1)/(2Hs+1)<P3, it means
that all conditions indicate that the players need to improve themselves by
speculatively leaning from others.

In practice, different imitation strategies can be implemented according to the
characteristics of the problem. For the function optimization problems, if r1 =rand
(0,n-1), r2 =rand(0,n-1), and β =random(), then if β <0.5 thenτ ¼ ð2βÞ1=16,
otherwiseτ ¼ ð2� 2βÞ1=16, so we use the following strategy to implement Ii
speculatively learning from Ij (line 5 of Figure 2): Ip.gen[r2] = 0.5(1-τ) Ii.gen[r2] +
(1 +τ) Ij.gen[r1], then if the value of Ip.gen[r2] is out of range, assign the required
random value to Ip.gen[r2]. We then implement that Ii strategically copies a
segment of genes from Ij by Ip.gen[r1] = 0.5(1-τ) Ii.gen[r1] + (1 +τ) Ij.gen[r1], and
if the value of Ip.gen[r1] is out of the decision space, assign the required random
value to Ip.gen[r1].

Belief learning operator

As mentioned above, belief learning refers to models in which each player
adjusts its own strategies with respect to an improvement of payoffs and
competitiveness against the next-period opponent behavior. That means the
player convinces that one strategy will facilitate positive feedback, and insists
on employing the strategy to train itself with the expectation of improving
the future competitiveness. Generally, this kind of self-training is associated
with training methods and duration, and decision makers are usually not
completely committed to just one set of ideas, or to just one way of behaving,
and the real story is that several systems of ideas, or several possible ways of

Figure 2. General framework of the imitation operator.
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behaving are present in their minds simultaneously. Which of these predo-
minate, and which are given less attention, depends on the experiences of the
individual (Borgers and Sarin 1997). Thus, we let the operator perform under
a given probability P2. If the belief learning is expected to run many times,
assign P2 a bigger value, otherwise P2 is set to a small one. Different belief
learning strategies can be designed for difference problems. If some char-
acteristic of the solution need to be emphasized, the preferential knowledge
can be used to specify a belief learning algorithm. Some local optimization
methods can also be added into this section. It is very convenient for people
to implement what they think of. Figure 3 is a kind of belief learning
procedure for real-valued presentation problems. The offspring replaces its
parent only when the offspring is better than its parent so as to implement
the elitist conservation strategy.

In particular, the belief learning operator is different from the belief space
of a cultural algorithm (Reynolds 1999), which is divided into distinct
categories representing different domains of knowledge that the population
has of the search space. The belief space is updated after each iteration by the
best individuals of the population.

Update players set

We believe the existence of the parent is justified and competitive; we infer
the offspring has the capability to survive if the offspring is stronger or better
than its parents. Based on this, the GameEA uses a simple strategy to update
the players’ set, which is that the offspring replaces its parent and inherits the
parent’s fortune like the payoffs and behavior only when the offspring is
better than its parent so as to implement the elitist conservation strategy and
to facilitate global convergence. For each repeat loop (lines 5–12 of Figure 1),
the new player does not shy away from other players’ challenges; the game is

Figure 3. Pseudo-code for the belief learning operator for the real-valued presentation.
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all around for all players regardless of whether the individual is experienced
or inexperienced.

Performance comparison and experimental results

Test problems

In order to check the performance, C++ language was employed to imple-
ment GameEA. Our programming platform is the.net, and the PC is config-
ured to AMD Phenom ™ II X4 810 CPU (2.59 GHz), 2 GB of RAM. We also
have chosen four kinds of algorithms: Standard Genetic Algorithm (StGA)
(Holland 1975), Island-model Genetic Algorithms (IMGA) (Alba and
Tomassini 2002), finding multimodal solutions using restricted tournament
selection (RTS)(Harik 1995), and Dual-Population Genetic Algorithm for
adaptive diversity control (Park and Ryu 2010), which are famous for their
distinguished performances with different characteristics and were used for
comparing the performances. IMGA is a typical example of multi-population
GAs, evolves two or more subpopulations, and uses periodic migration for
the exchange of information between the subpopulations. RTS employs a
crowding method, which is somewhat different from the standard crowding.
DPGA employs two populations, in which the main population evolves to
find a good solution to the given problem and the reserve population evolves
to provide controlled diversity to the main population.

To focus on the searching accuracy and stability, 13 benchmark func-
tions f1–f13 shown in Table 2 have been considered in our experiments on
real-valued representation, which are widely adopted for comparing the
capabilities of evolutionary algorithms. The functions f1–f7 are uni-modal
distribution function with one peak within the entire given domain, and
the functions f8–f13 are multimodal functions with a number of local
optima in the searching space. The column n in Table 2 indicates the
dimensions used.

Experimental setup

Specifically, we continue to use the parameters and strategies that StGA,
IMGA, RTS, and DPGA have used. IMGA has multiple subpopulations,
each of which evolves separately. RTS uses a crowding method, which is
somewhat different from the standard crowding, which selects parents
randomly and lets the latest offspring replace the most similar one by
using a specific strategy. DPGA also uses an additional population as a
reservoir of diversity. Additional details of these algorithms can be found
in other studies (Alba and Tomassini 2002; Harik 1995; Holland 1975;
Park and Ryu 2010).
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The players size N is set to 50 for GameEA, the payoffs weight W1, losses
weight W2, learning probability P1, mutation probability P2, and the spec-
ulative probability P3 are set to 0.9, 0.01, 0.9, 0.1, and 0.1, respectively. For
each function, the maximum iteration of GameEA is a set of homogeneous
iterations with the compared algorithm. For example, the parent size and the
offspring size for DPGA are, respectively, set to 50 and 100 for function f1,
and the iterations are set to 1500, then its maximum iteration is 225000, so
the maximum generation is set to 4500 with the players’ size of 50. Table 3
summarizes the generations used for each function, which are indicated in
the Maximum generation column of the table. The following sections present
the statistical experimental results obtained for the functions mentioned
above.

Experimental results analysis

For each test problem, 50 independent experiments were executed and the
averaged results are shown in Table 3. The avg and stdev columns stand for
the average and standard deviation of the results, respectively. Table 3 also
provides the results of the t-test at the confidence level of 5% between
GameEA and each of the other algorithms. To facilitate this description, we
use “+” to indicate that GameEA is significantly better than the compared
algorithm, “–” represents that GameEA is obviously worse than the other
four algorithms, and “≈” indicates that there are no statistically significant
differences between GameEA and the compared algorithms.

For the uni-modal functions f1, f2, and f4, GameEA obtains the best results
with an average result of 4.33E-96, 1.52E-66, and 0.0374, respectively. The
DPGA shows the second best results, with an average result of 1.47E-52 for
function f1, and the RTS is the third on the list. The StGA convergence
accuracy is slightly worse than IMGA for functions f1 and f2, but IMGA is
worse than StGA for function f4. For the function f4, RTS with an average of
1.391 comes second, but GameEA’s average is less than 3% of RTS. For the
function f6, GameEA is significantly better than StGA and DPGA. GameEA
is similar to IMGA and RTS, but it holds a smaller standard deviation. For
the functions f5 and f7, all the above-mentioned algorithms converge to the
global minimum.

To make a careful observation of the results on the highly multimodal
functions f8–f13, which have a number of local optima, all the algorithms
converge to the global minimum on functions f8 and f9. RTS, DPGA, and
GameEA show no significant differences with the convergence of global
optima in each independent trial on function f10, which means all the
algorithms are capable of solving such problems.

GameEA is the best, with the best stability convergence in 50 independent
trials for functions f11–f13, which shows good search-ability, stability, and
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robustness. It is a remarkable fact that StGA and DPGA did not converge to
global optimal solution with the same standard deviation of zero in all the
trials for function f13, which indicates that those algorithms have been stalled
at the local optimal points, whereas GameEA escapes and continually evolves
to the global minimum. We also determined the final solutions of GameEA
about f13; although its averages of optimum are not perfect, we found that
there were 39 parts in 50 to obtain the global optimum.

For function f3, GameEA is obviously worse than the other four algo-
rithms. When we studied the 50 experimental outputs, it was found that the
best solution is set to 4.43E-12 and the worst optimum is set to 0.0122, which
means that the final results share a large span, which leads to a poor average
and standard deviation. We expand the generations up to 20000 in order to
check the sustainability of GameEA, and GameEA reported an average of
1.008E-15 with a standard deviation of 2.5E-12. The statistics results based
on 50 independent trials obtained by GameEA for function f3 are shown in
Figure 4. According to the average best-so-far curve shown in Figure 4(a),
GameEA can escape from the local optima and keep improving the precision,
namely that the best-to-so-far is improved continually along with the
increase of the evolution, which partially indicates that the GameEA has a
predominance sustainability of evolution.

To observe the evolution of the best-so-far optimal solution, we have
checked the tendency of averages of uni-modal function f4 and multimodal
function f12, and its average best-so-far curves for those functions are shown
in Figure 5 (the data of compared algorithms is from Park and Ryu (2010)).
For uni-modal function f4, GameEA shows the fastest convergence and
provides the best results at the very early evolution, followed by RTS and
then DPGA; however, it also indicates the risk of getting stuck in local
optima and cannot escape from them. For uni-modal function f12,
GameEA is the champion and DPGA comes next, although the convergence
curves of all the algorithms are not that different at the last stage.

(a) Average best-so-far curves during evolution (b) Box plots of the best-so-far solutions
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Figure 4. Statistics results based on 50 independent runs obtained by GameEA for function f3.
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In conclusion, the summarized results of statistical significance testing to
compare GameEA with each of the other four algorithms are shown in
Table 4. GameEA performs better than the other algorithms for all of the
multimodal problems. For the uni-modal functions, GameEA loses only one
time against StGA, IMGA, RTS, and DPGA. It can be concluded that
GameEA has better performance, such as the stability, robustness, and
accuracy of solution, compared with algorithms on function optimization
problems.

Additional experiments with different players’ size

This section compares the convergence of GameEA with different players’ size
to understand whether this parameter has significant effect on the conver-
gence. The experimental settings are the same as the previous section, except
the players sizeN and the maximum generation. The generation is set to 3E+6,
and the N is set to 20, 50, 100, 200, 300, and 500, respectively. In this
experiment, we focus only on the players’ size as the factor relating to the

Figure 5. Average best-so-far curves for functions during evolution.

Table 4. Summary of statistically significance testing.

problems

StGA IMGA RTS DPGA

+ − + − + − + −

Unimodal functions (f1–f7) 4 1 3 1 3 1 4 1
Multimodal functions (f8–f13) 4 0 4 0 3 0 3 0
total 8 1 7 1 6 1 7 1
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convergence of GameEA, which is considered as six levels of the factor. Thirty
independent trials were executed, and Table 5 shows the experimental results
of GameEAwith different players’ size. Objectively, even given the same inputs
and parameters, due to the random factors (game randomness, random num-
ber, etc.), GameEA might converge to different solutions for one problem. To
conclude whether the algorithm has performance differences of searching for
the perfect solution between different population sizes is to distinguish what is
the primary factor leading to the differences between the different parameters
and the random error. This problem can boil down to a question that whether
the six kinds of samples have the same distribution, namely to check whether
the normal populationmeans are equal among the observation groups with the
same variance. Analysis of variance (ANOVA) (Anscombe 1948) was used to
analyze the differences among group means.

Experiments and analysis

Table 6 shows the results of the homogeneity test of variances and one-
sample Kolmogorov–Smirnov for Rosenbrock function with different para-
meters. The Levene statistic is 20.046, the degrees of freedom df1 and df2 are
5 and 174, respectively, and the two-tailed significance probability is 0.0001.
The tests show that the overall sample meets the requirements of homoge-
neity of variance. Obviously, Table 6(b) provides evidence of the normality of
each group of data. Using the same method, it can be proved that the data of
the other test problems also meet the requirements of ANOVA, and hence
the other detailed data are omitted.

We assume that this is a null hypothesis H0, namely that the convergence
accuracy has no significant difference with different population size N on the
significance level of 0.05 (α =0.05). Table 7 shows the results of ANOVA and
the homogeneous subset for different groups of data obtained by GameEA
with different parameters. ANOVA gives an overall test for the difference
between the means of six groups. According to the principle, the within-
groups only indicate the stochastic error caused by random variation, and the
between-groups reflect both stochastic error and systematic error. If the
population/players size has no effect on the convergence, the between-groups
contain only random errors among the tested six groups, and then the ratio
of between-groups and within-groups approximates 1. Otherwise, the
between-groups contain not only random variance but also systematic
error, yet it is obvious that the ratio of between-groups and within-groups
is greater than 1, which implies the population size has a significant impact
on the final results when this ratio reached a certain level.

As can be seen in Table 7, the observed value of F is found by dividing the
between-group variance by the within-group variance, and all F > Fα=0.05, the
null hypothesis H0 is rejected, which means the convergence accuracy has
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significant difference with different population size N on the significance
level of 0.05. Moreover, the multiple comparisons of homogeneous subset
means is another kind of expression of the multiple comparison of group
means, and there is no significant difference among the data sets belonging
to the same homogeneous subset. In Table 7(a) there are two homogeneous
subsets, the probability of the hypothesis – that the group means are equal
when the population sizes are set to 50, 100, 200, 300, and 500 on the
significance levelα – is 0.864 for the first subset, and this probability is bigger
than α =0.05, so that the hypothesis is rejected, which means the group
balance variance is good; and the other subset only has one group data, and
there is no possibility of discussing its balance. It can be concluded the
population size belonging to the two homogeneous subsets have significant
impact on GameEA’s convergence. So to consider this conclusion, we can
infer that the population size N corresponding to the first homogeneous
subset is more suitable for GameEA to solve the function f4. Similarly, the
population size belonging to the set of {20, 50, 100, 200, and 300} will lead
GameEA to improve the performance for function f3. For function f6, the
experiment data were divided into six homogeneous subsets on the signifi-
cant level 0.05, and the average variance increases with the increase of the
value of N, which indicates the average convergence accuracy decreases with
the increase of N. We modified the significance level to 0.01, and then those
groups with N =20 or 50 or 100 remain at the same homogeneous subset.
Based on the observed factors, we make a conclusion: GameEA with the
population size N =50 or 100 will give more satisfactory performance when
adopting it to optimize the uni-modal function problem.

For multimodal function f14, there are three homogeneous subsets, namely
{N|200, 500, 300, and 100}, {N|100, 50}, and {N|50, 20}. The observed value of
Fα of each subset is 0.13, 0.96, and 0.676, respectively. Taking this into
consideration and referring to Table 5, it can be suggested that GameEA

Table 6. Results of homogeneity test of variances and one-sample Kolmogorov–Smirnov for
function Rosenbrock with different parameters.
(a) Test of Homogeneity of variances

Levene Statistic df1 df2 Sig.
20.046 5 174 0.0001

(b) One-sample Kolmogorov–Smirnov test

Sample Size 180
Normal Parametersa,b Mean −9.987E-1

Std. Deviation 2.5003E-3
Most Extreme Differences Absolute 0.443

Positive 0.443
Negative −0.299
Kolmogorov-Smirnov Z 5.946
Asymp. Sig. (2-tailed) 0.0001

aTest distribution is Normal. b. Calculated from data.
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Table 7. Summary of ANOVA and a homogeneous subset for six group data obtained by
GameEA with different parameters.

Sum of Squares df Mean Square F Fα
(a)f4:Rosenbrock

Between Groups 11.329 5 2.266 4.474 0.001
Within Groups 88.122 174 0.506
Total 99.450 179
Homogeneous subset (Duncana)

Group Subset for α= 0.05

1 2
100 3.5981E-5
200 1.9145E-4
300 8.4040E-4
500 5.5087E-3
50 3.6319E-2
20 6.8086E-1
Fα 0.864 1.000

(b) f3: Schwefel 2.21
Between Groups 2.26E-3 5 4.53E-4 402.593 1.3E-93
Within Groups 1.96E-4 174 1.13E-6
Total 2.46E-3 179

1 2
20 3.6772E-14
200 8.3989E-8
50 2.6248E-7
100 1.1265E-5
300 4.2420E-5
500 9.5290E-3
Fα 0.893 1.000

(c) f6: Noisy Quartic
Between Groups 1.76E-3 5 3.52E-4 276.416 8.7E-81
Within Groups 2.22E-4 174 1.27E-6
Total 1.98E-3 179

1 2 3 4 5 6
20 9.053E-4
50 1.598E-3
100 2.545E-3
200 4.649E-3
300 6.398E-3
500 9.981E-3
Fα 1.000 1.000 1.000 1.000 1.000 1.000

(d) f14: Ackley
Between Groups 2.62E-29 5 5.24E-30 5.684 7.0E-5
Within Groups 1.61E-28 174 9.23E-31
Total 1.87E-28 179

1 2 3
200 0
500 0
300 1.0367E-16
100 4.147E-16 4.147E-16
50 8.293E-16 8.293E-16
20 9.330E-16
Fα 0.130 0.096 0.676

aUses Harmonic Mean Sample Size = 30.
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will show predominance performance for the multimodal function optimiza-
tion when its population size is N =200.

Summary of the analysis

According the statistical analysis results, under the significance level α =0.05,
players size has a crucial impact on the performance of GameEA. The size
affects the convergence accuracy, capability of solving the deceptive pro-
blems, and the exploration ability of insight into the global optimal solution.
If the size is too small, there will not be enough schemas to be exploited
(Dejong and Spears 1991), resulting into a premature; if the population size is
too large, it may require unnecessary large computational resources and
result in an extremely long running time. When employing GameEA to
solve problems, setting the players’ size depends on the complexity of the
problem. It is suggested that the players’ size is set to 50 or 100 for uni-modal
function and to 200 for multimodal function.

Conclusion

Development of GameEA was motivated by studies that attempt to develop
simpler and more efficient game evolutionary algorithms. Unlike many
search algorithms, GameEA has a payoff expectation mechanism, and the
player makes a decision by evaluating the payoff expectation. Moreover,
GameEA’s strategy for generating a trial population includes Imitation and
Belief learning operators. According to the GameEA’s eliting conservation
strategy for updating the players set, the offspring replaces its parent and
inherits the parents’ information only when the offspring is better than its
parent. Experiments have been conducted on various benchmark functions
(unimodal functions and multimodal function). We have compared the
performance of the GameEA with that of StGA, IMGA, RTS, and DPGA.
We have also analyzed some additional experiments to determine the influ-
ence of player size on evolution. In future work, we will conduct experiments
with more intensive problems, including multi-objective optimization pro-
blems involving more complicated applications.

Funding

The authors would like to thank the financial support provided by the National Natural
Science Foundation of China under Grants 61640209 and 51475097, Foundation for
Distinguished Young Talents of Guizhou Province under Grant QKHRZ[2015]13, Science
and Technology Foundation of Guizhou Province under Grants JZ[2014]2004, JZ[2014]2001,
ZDZX[2013]6020, LH[2016]7433, ZDZX[2014]6021, and National Key Technology Support
Program of China under Grant 2012BAH62F00.

514 G. YANG ET AL.



ORCID

Guanci Yang http://orcid.org/0000-0001-8761-5195

References

Alba, E., and M. Tomassini. 2002. Parallelism and evolutionary algorithms. IEEE Transactions
on Evolutionary Computation 6 (5):443–62. doi:10.1109/TEVC.2002.800880.

Anscombe, F. J. 1948. The validity of comparative experiments. Journal of the Royal Statistical
Society. Series A (General) 111 (3):181–211. doi:10.2307/2984159.

Borgers, T., and R. Sarin. 1997. Learning through reinforcement and replicator dynamics.
Journal of Economic Theory 77 (1):1–14. doi:10.1006/jeth.1997.2319.

Bulo, S. R., A. Torsello, and M. Pelillo. 2009. A game-theoretic approach to partial clique
enumeration. Image and Vision Computing 27 (7):911–22. doi:10.1016/j.imavis.2008.10.003.

Colman, A. M. 2003. Cooperation, psychological game theory, and limitations of rationality
in social interaction. Behavioral and Brain Sciences 26 (2):139. doi:10.1017/
S0140525X03000050.

Dejong, K. A., and W. M. Spears. 1991. An analysis of the interacting roles of population-size
and crossover in genetic algorithms. Lecture Notes in Computer Science 496:38–47.

Dorigo, M., and L. M. Gambardella. 1997. Ant colony system: A cooperative learning
approach to the traveling salesman problem. Evolutionary Computation, IEEE
Transactions On 1 (1):53–66. doi:10.1109/4235.585892.

Fontanari, J. F., and L. I. Perlovsky. 2008. A game theoretical approach to the evolution of
structured communication codes. Theory in Biosciences 127 (3):205–14. doi:10.1007/
s12064-008-0024-1.

Friedman, D., S. Huck, R. Oprea, and S. Weidenholzer. 2015. From imitation to collusion:
Long-run learning in a low-information environment. Journal of Economic Theory
155:185–205. doi:10.1016/j.jet.2014.10.006.

Ganesan, T., I. Elamvazuthi, and P. Vasant. 2015. Multiobjective design optimization of a
nano-CMOS voltage-controlled oscillator using game theoretic-differential evolution.
Applied Soft Computing 32:293–99. doi:10.1016/j.asoc.2015.03.016.

Harik, G. R. 1995. Finding multimodal solutions using restricted tournament selection. Paper
Read at Proceedings of the 6th International Conference on Genetic Algorithms 24–31.

Hausknecht, M., J. Lehman, R. Miikkulainen, and P. Stone. 2014. A neuroevolution approach
to general Atari game playing. IEEE Transactions on Computational Intelligence and AI in
Games 6 (4):355–66. doi:10.1109/TCIAIG.2013.2294713.

He, J., and X. Yao. 2005. A game-theoretic approach for designing mixed mutation strategies.
In LECTURE NOTES IN COMPUTER SCIENCE, eds. L. Wang, K. Chen, and Y. S. Ong,
279–88. BERLIN: SPRINGER-VERLAG BERLIN.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press.

Hu, H., and H. W. Stuart Jr. 2002. An epistemic analysis of the Harsanyi transformation.
International Journal of Game Theory 30 (4):517–25. doi:10.1007/s001820200095.

Jiang, G., S. Shen, K. Hu, L. Huang, H. Li, and R. Han. 2015. Evolutionary game-based
secrecy rate adaptation in wireless sensor networks. International Journal of Distributed
Sensor Networks 11 (3):975454. doi:10.1155/2015/975454.

Karaboga, D., and B. Basturk. 2007. A powerful and efficient algorithm for numerical
function optimization: Artificial bee colony (ABC) algorithm. Journal of Global
Optimization 39 (3):459–71. doi:10.1007/s10898-007-9149-x.

APPLIED ARTIFICIAL INTELLIGENCE 515

http://dx.doi.org/10.1109/TEVC.2002.800880
http://dx.doi.org/10.2307/2984159
http://dx.doi.org/10.1006/jeth.1997.2319
http://dx.doi.org/10.1016/j.imavis.2008.10.003
http://dx.doi.org/10.1017/S0140525X03000050
http://dx.doi.org/10.1017/S0140525X03000050
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/s12064-008-0024-1
http://dx.doi.org/10.1007/s12064-008-0024-1
http://dx.doi.org/10.1016/j.jet.2014.10.006
http://dx.doi.org/10.1016/j.asoc.2015.03.016
http://dx.doi.org/10.1109/TCIAIG.2013.2294713
http://dx.doi.org/10.1007/s001820200095
http://dx.doi.org/10.1155/2015/975454
http://dx.doi.org/10.1007/s10898-007-9149-x


Koh, A. 2012. An evolutionary algorithm based on Nash dominance for equilibrium pro-
blems with equilibrium constraints. Applied Soft Computing 12 (1):161–73. doi:10.1016/j.
asoc.2011.08.056.

Kontogiannis, S., and P. Spirakis. 2005. Evolutionary games: An algorithmic view. In Lecture
Notes in Computer Science, eds. O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S.
Leonardi, A. VanMoorsel, and M. VanSteen, 97–111. Berlin: Springer-Verlag Berlin.

Lee, D., L. F. Gonzalez, J. Periaux, K. Srinivas, and E. Onate. 2011. Hybrid-game strategies for
multi-objective design optimization in engineering. Computers & Fluids 47 (1):189–204.
doi:10.1016/j.compfluid.2011.03.007.

Li, X., Z. Shao, and J. Qian. 2002. An optimizing method based on autonomous animals:
Fish-swarm algorithm. System Engineering Theory and Practice 22 (11):32–38.

Liu, W., and X. Wang. 2008. An evolutionary game based particle swarm optimization
algorithm. Journal of Computational and Applied Mathematics 214 (1):30–35.
doi:10.1016/j.cam.2007.01.028.

Maass, W., T. Natschläger, and H. Markram. 2002. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computation 14
(11):2531–60. doi:10.1162/089976602760407955.

Madani, K., and M. Hooshyar. 2014. A game theory-reinforcement learning (GT-RL) method
to develop optimal operation policies for multi-operator reservoir systems. Journal of
Hydrology 519 (A):732–42. doi:10.1016/j.jhydrol.2014.07.061.

Mejia, M., N. Pena, J. L. Munoz, O. Esparza, and M. A. Alzate. 2011. A game theoretic trust
model for on-line distributed evolution of cooperation in MANETs. Journal of Network
and Computer Applications 34 (1):39–51. doi:10.1016/j.jnca.2010.09.007.

Misra, S., and S. Sarkar. 2015. Priority-based time-slot allocation in wireless body area networks
during medical emergency situations: An evolutionary game-theoretic perspective. IEEE Journal
of Biomedical and Health Informatics 19 (2):541–48. doi:10.1109/JBHI.2014.2313374.

Nax, H. H., and M. Perc. 2015. Directional learning and the provisioning of public goods.
Scientific Reports 5 (8010). doi:10.1038/srep08010.

Neshat, M., G. Sepidnam, M. Sargolzaei, and A. N. Toosi. 2014. Artificial fish swarm
algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative
applications. Artificial Intelligence Review 42 (4):965–97. doi:10.1007/s10462-012-9342-2.

Niyato, D., E. Hossain, and H. Zhu. 2009. Dynamics of multiple-seller and multiple-buyer
spectrum trading in cognitive radio networks: A game-theoretic modeling approach. IEEE
Transactions on Mobile Computing 8 (8):1009–22. doi:10.1109/TMC.2008.157.

Nowak, M. A., and K. Sigmund. 2004. Evolutionary dynamics of biological games. Science 303
(5659):793–99. doi:10.1126/science.1093411.

Park, T., and K. R. Ryu. 2010. A dual-population genetic algorithm for adaptive diversity
control. IEEE Transactions on Evolutionary Computation 14 (6):865–84. doi:10.1109/
TEVC.2010.2043362.

Periaux, J., H. Q. Chen, B. Mantel, M. Sefrioui, and H. T. Sui. 2001. Combining game theory
and genetic algorithms with application to DDM-nozzle optimization problems. Finite
Elements in Analysis and Design 37 (5):417–29. doi:10.1016/S0168-874X(00)00055-X.

Qin, Z., T. Wan, Y. Dong, and Y. Du. 2015. Evolutionary collective behavior decomposition model
for time series data mining. Applied Soft Computing 26:368–77. doi:10.1016/j.asoc.2014.09.036.

Ram K. M., R. Jayasree, and D. Suresh. 2014. Applications of Game Theory. Academic
Foundation, New Delhi.

Reynolds, R. G. 1999. Cultural algorithms: Theory and applications. In New ideas in optimi-
zation, eds. D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V.
Price, 367–78. UK: McGraw-Hill Ltd.

516 G. YANG ET AL.

http://dx.doi.org/10.1016/j.asoc.2011.08.056
http://dx.doi.org/10.1016/j.asoc.2011.08.056
http://dx.doi.org/10.1016/j.compfluid.2011.03.007
http://dx.doi.org/10.1016/j.cam.2007.01.028
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1016/j.jhydrol.2014.07.061
http://dx.doi.org/10.1016/j.jnca.2010.09.007
http://dx.doi.org/10.1109/JBHI.2014.2313374
http://dx.doi.org/10.1038/srep08010
http://dx.doi.org/10.1007/s10462-012-9342-2
http://dx.doi.org/10.1109/TMC.2008.157
http://dx.doi.org/10.1126/science.1093411
http://dx.doi.org/10.1109/TEVC.2010.2043362
http://dx.doi.org/10.1109/TEVC.2010.2043362
http://dx.doi.org/10.1016/S0168-874X(00)00055-X
http://dx.doi.org/10.1016/j.asoc.2014.09.036


Rosenstrom, T., P. Jylha, L. Pulkki-Raback, M. Holma, I. T. Raitakari, E. Isometsa, and L.
Keltikangas-Jarvinen. 2015. Long-term personality changes and predictive adaptive
responses after depressive episodes. Evolution and Human Behavior 36 (5):337–44.
doi:10.1016/j.evolhumbehav.2015.01.005.

Shi Y. 2011. Brain Storm Optimization Algorithm. In: Tan Y., Shi Y., Chai Y., Wang G. (eds)
Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_36.

Simon, A., G. Jacob, and H. Charles. 1999. Stochastic Game Theory: Adjustment to
Equilibrium Under Noisy Directional Learning, Virginia Economics Online Papers,
University of Virginia, Department of Economics, https://EconPapers.repec.org/RePEc:
vir:virpap:327.

Spiliopoulos, L. 2012. Pattern recognition and subjective belief learning in a repeated constant-sum
game. Games and Economic Behavior 75 (2):921–35. doi:10.1016/j.geb.2012.01.005.

Stahl, D. O. 2000. Rule learning in symmetric normal-form games: Theory and evidence.
Games and Economic Behavior 32 (1):105–38. doi:10.1006/game.1999.0754.

Szubert, M., W. Jaskowski, and K. Krawiec. 2013. On scalability, generalization, and hybri-
dization of coevolutionary learning: A case study for Othello. IEEE Transactions on
Computational Intelligence and AI in Games 5 (3):214–26. doi:10.1109/
TCIAIG.2013.2258919.

Tembine, H., E. Altman, R. El-Azouzi, and Y. Hayel. 2010. Evolutionary games in wireless
networks. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 40
(3SI):634–46. doi:10.1109/TSMCB.2009.2034631.

Wei, G., A. V. Vasilakos, Y. Zheng, and N. Xiong. 2010. A game-theoretic method of fair
resource allocation for cloud computing services. Journal of Supercomputing 54 (2):252–69.
doi:10.1007/s11227-009-0318-1.

Wikipedia. 2015. Game theory.
Woldemariam, K. M., and G. G. Yen. 2010. Vaccine-enhanced artificial immune system for

multimodal function optimization. IEEE Transactions on Systems Man and Cybernetics
Part B-Cybernetics 40 (1):218–28. doi:10.1109/TSMCB.2009.2025504.

Yang, X. 2010. Firefly algorithm, stochastic test functions and design optimisation.
International Journal of Bio-Inspired Computation 2 (2):78–84. doi:10.1504/
IJBIC.2010.032124.

Yang, X., and S. Deb. 2009. Cuckoo search via Lévy flights.. Paper read at 2009 World
Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE: Coimbatore
210-214. doi: 10.1109/NABIC.2009.5393690

Yang, G., Y. Wang, S.B. Li, and Q. Xie. 2016. Game evolutionary algorithm based on
behavioral game theory. Journal of Huazhong University of Science and Technology
(Natural Science Edition) 44(7): 68–73.

Yang G., A. Zhang, S. Li, W. Yang, Y. Wang, Q. Xie, and L. He. 2017. Multi-objective
evolutionary algorithm based on decision space partition and its application in hybrid
power system optimisation. Applied Intelligence 46 (4):827–844. doi: 10.1007/s10489-016-
0864-1

APPLIED ARTIFICIAL INTELLIGENCE 517

http://dx.doi.org/10.1016/j.evolhumbehav.2015.01.005
https://doi.org/10.1007/978-3-642-21515-5_36
https://EconPapers.repec.org/RePEc:vir:virpap:327
https://EconPapers.repec.org/RePEc:vir:virpap:327
http://dx.doi.org/10.1016/j.geb.2012.01.005
http://dx.doi.org/10.1006/game.1999.0754
http://dx.doi.org/10.1109/TCIAIG.2013.2258919
http://dx.doi.org/10.1109/TCIAIG.2013.2258919
http://dx.doi.org/10.1109/TSMCB.2009.2034631
http://dx.doi.org/10.1007/s11227-009-0318-1
http://dx.doi.org/10.1109/TSMCB.2009.2025504
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1007/s10489-016-0864-1
http://dx.doi.org/10.1007/s10489-016-0864-1

	Abstract
	Introduction
	Related works
	Fundamental of GameEA
	Origin of thought
	Model of game evolution
	Learning strategies

	Proposed algorithm: GameEA
	Framework of proposed algorithm
	Initialization
	Imitation operator
	Belief learning operator
	Update players set

	Performance comparison and experimental results
	Test problems
	Experimental setup
	Experimental results analysis

	Additional experiments with different players’ size
	Experiments and analysis
	Summary of the analysis

	Conclusion
	Funding
	References

