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ABSTRACT 
 

The objective of this paper is modeling and forecasting the weekly jute prices of Samsi market in 
the Malda district of West Bengal in the presence of long memory process. The long memory 
behavior of series is investigated by the ACF plot and Hurst R/S analysis. A fractionally integrated 
autoregressive moving-average (ARssFIMA) model is fitted using 668 weekly data (January 2009-
November 2022). This study shows the efficiencies of the Hurst exponent, GPH, Smoothed 
periodogram, Local Whittle, and Wavelet methods used to estimate the fractional difference 
parameter in the ARFIMA model. Furthermore, we compared the forecasting abilities of the 
ARFIMA and ARIMA models. The results show that long memory is present in the jute price series. 
The models selected according to each method are ARFIMA (3,0.348,0), ARFIMA (3,0.291,1), 
ARFIMA (2,0.487,0), ARFIMA (3,0.461,0), ARFIMA (2,0.311,0), and ARIMA (2,1,1) on the basis of 
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minimum AIC and BIC using 534 in-sample data. Finally, the wavelet method based ARFIMA 
(2,0.311,0) model is found to be the best optimal model in terms of MAE, RMSE, and MAPE criteria 
using 134 out-of-sample data. A comparative study indicates that the forecasting performance of 
the ARFIMA model is strongly better than that of the ARIMA model in this regard. 

 
Keywords: Jute prices; long memory; fractional difference; forecasting; ARIMA model; ARFIMA 

model. 
 

1. INTRODUCTION 
 
Agriculture and allied sectors have emerged as 
the most resilient sector of the Indian economy in 
the aftermath of the COVID-19 pandemic, with 
positive growth rates and rising output over the 
last two years. Jute (Corchorus capsularis L.), 
also referred to as the "Golden Fiber", is one of 
the most important commercial cash crops grown 
in India and is the second most affordable natural 
fiber after cotton [1]. Jute, originally intended only 
as a raw material for the packaging industry, has 
now developed into a versatile raw material for a 
wide range of applications, including the textile 
and paper industry, flooring, floor protection, 
furniture, and handicrafts. 
 
India is the world's largest producer of raw jute, 
accounting for more than half of global jute 
production. Among the states, West Bengal 
ranks first in area and production of jute in the 
country with a total area of 0.52 million hectares 
(78.24 percent) and a total production of 7.61 
million bales (79.68 percent) with a 2643 
kg/hectare productivity during the year 2020–21, 
followed by Bihar (0.98 million bales production) 
and Assam (0.80 million bales production) 
(Directorate of Economics & Statistics, DA&FW). 
 
Agricultural prices play an important role in the 
whole national economy of India. Commodity 
price projections and forecasts are critical for 
market participants making production and 
marketing strategies as well as for policy makers 
managing commodity programs and assessing 
the market impact of national or international 
events [2]. Time series modelling is one such 
approach that collects and analyses historical 
data in order to develop appropriate models that 
accurately capture the inherent structure and 
features of the series [3]. In many agricultural 
datasets, such as daily commodity price data, 
daily precipitation data, and daily temperature 
data, it is seen that the long-distance 
observations are dependent, which means that 
the dataset has a long memory or long-range 
dependency characteristic [1]. Traditional models 
that only describe short-term memory, such as 
AR(𝑝), MA(𝑞), ARMA(𝑝, 𝑞), and ARIMA(𝑝, 𝑑, 𝑞),  

cannot adequately explain long-term memory 
features [4]. A fractional-order signal processing 
technique, i.e., the Autoregressive Fractional 
Integral Moving Average Model (ARFIMA) model, 
has been widely used for decades to predict 
long-memory time series in divergent domains 
[5,6]. 
 

Mandelbrot [7], Booth et al. [8], and Helms et al. 
[9] applied the rescaled range (R/S) method to 
detect the existence of long memory in the 
futures prices and provided evidence of long-
memory behaviour in financial markets. Lo [10], 
Chow et al. [11], and Nawrocki et al. [12] 
conducted similar studies on stock markets. 
Erfani and Samimi [13] studied the long memory 
of the stock price index (TSIP) by Hurst exponent 
and established the ARFIMA and ARIMA 
models, concluding that the ARFIMA is a much 
better model in long memory. Paul [14] 
investigated the ARFIMA model along with its 
estimation procedure, and the study has 
revealed that the ARFIMA model could be used 
successfully for modelling as well as forecasting 
of daily wholesale price of pigeon pea in different 
markets. Again, Paul et al. [15] reached a similar 
conclusion after investigating the ARFIMA model 
and its various estimation procedures in both 
simulation and with real data. Mohamed [6] used 
the GPH, smoothed GPH, Local Whittle, R/S 
analysis and Exact Maximum Likelihood 
estimation methods to estimate the fractional 
parameter in the ARFIMA model and found that 
the Local Whittle method based ARFIMA model 
is more accurate than others for the total value of 
traded securities in the Arab Republic of Egypt. 
Similar works have been done by Liu et al. [5], 
Paul [16], Safitri et al. [17], and Monge and 
Infante [18]. 
 

2. METHODOLOGY 
 

2.1 Data Description 
 

Jute is the main cash crop of the Malda district 
and includes 3 markets, viz., Samsi, English 
Bazar, and Gajol markets. Here, Samsi market, 
where the majority of jute arrivals take place, is 
selected for the present study. In order to carry 
out our analysis, historical jute price (Rs/quintal) 
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data has been taken from the Agricultural 
Marketing Information Network 
(https://agmarknet.gov.in) portal from January 
2009 to November 2022 (668 weeks) with weekly 
data. In the present study, statistical analyses 
have been carried out using the powerful 
software “RStudio” version 4.2.1 
(https://www.rstudio.com) using the ‘forecast’, 
‘rugarch’ and ‘wmtsa’ packages. 
 

2.2 Test for Stationarity 
 

Testing the stationarity of data is very important 
in studies where the underlying variables are 
time-based. A time series is said to be stationary 
if its underlying generating process relies on 
constant mean and variance and its 
autocorrelation function (ACF) is essentially 
constant over time. If these conditions are not 
met, the series is not stationary. The                   
stationarity of the data was checked using                      
the Augmented Dickie-Fuller (ADF) test                          
and the Phillips-Perron (PP) unit root                         
test. 
 

2.2.1 Augmented dickey-fuller (ADF) test 
 

The Augmented Dickey-Fuller Test is an 
extension of the Simple Dickey-Fuller Test [19]. 
Due to the error term, it is unlikely to be white 
noise. They extended the test with additional lags 
related to the dependent variable to eliminate 
autocorrelation issues. The ADF test uses a 
least-squares estimator to estimate the linear 
model. In this model, the first difference in the 
time series at time 𝑡 is regressed on the level at 
time  𝑡 − 1 , augmented by the lag term of the 
dependent variable. Stationarity is then checked 
based on the significance of the level term. It can 
be illustrated as follows: 
 

∆𝑦𝑡 = 𝛽𝑇𝑡 + 𝜓𝑦𝑡−1 + ∑ 𝜙𝑖∆𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 

 

Where, ∑ 𝜙𝑖∆𝑦𝑡−𝑖
𝑝
𝑖=1  are the corresponding lag 

terms up to order 𝑝; the term 𝑇𝑡  is a vector of 
deterministic terms (constant, trend, etc.); and 𝜀𝑡 

is the error term. 𝜓 is the coefficient of interest 

and testing the null hypothesis ( 𝐻0 ): 𝜓  = 0, 
corresponds to the test following the unit root 
process with the alternative hypothesis (𝐻𝐴): 𝜓 < 
0, is that the time series is stationary. 
 

2.2.2 Phillips-perron unit root tests 
 
Phillips and Perron [20] developed the unit root 
test, which has become popular in financial time 
series analysis. Under the Phillips-Perron (PP) 

test, the same null and alternative hypotheses 
exist as under the Augmented Dickey Fuller 
(ADF) test. The Phillips-Perron (PP) test is 
generally preferred over the ADF test due to its 
robustness. The PP test works well with 
heteroscedastic errors and does not require lag 
lengths in the test regression. In particular, if the 
ADF test uses parametric autoregression to 
approximate the ARMA structure of the test 
regression's error, the PP test ignores the serial 
correlation of the test regression. The test 
regression model for this test is given by 
 

∆𝑦𝑡 = 𝛽𝑇𝑡 + 𝜓𝑦𝑡−1 + 𝑢𝑡 
 

Where, ∆  is the first difference operator. 𝑢𝑡  is 
trend stationary 𝐼(0)  and may be 
heteroskedastic.  
 

2.3 Long Memory Process 
 
In time series analysis, the idea of long-term 
memory, or long-range dependency, is crucial. 
The long memory feature occurs when the 
autocovariances for a stationary time series 
decay very slowly towards zero, like a power 
function but more slowly than an exponential 
decay. In this study, the Hurst exponent method 
[21] has been used to test the long memory. 
 
The time period spanned by the time series of 
length 𝑁 is divided into m contiguous sub-periods 

of length 𝑛 such that 𝑚 ∗ 𝑛 =  𝑁. The range 𝑅𝑗 , 

standard deviation 𝑆𝑗  and their average ratio 

(𝑅/𝑆)𝑗 are determined for each sub-period 𝑗. The 

range 𝑅𝑗 is the difference between the maximum 

and minimum index of accumulated deviations 
within the sub-period. This process is repeated 
until 𝑛 = 𝑁/2 by increasing 𝑛 to the next integer 
value; in order to avoid bias, at least two sub-
periods are required. In the next step, the (R/S)n 

is computed by the average of the (R/S)j values 
for all the contiguous sub-periods with length n. A 
least-squares method is then applied to (R/S)n to 
obtain an estimate of the slope of the regression 
line. This slop estimate is a measure of the Hurst 
Index which is an indicator of market persistence. 
The Hurst exponent (𝐻)  ranges from 0 to 1, 

when 0.5 < 𝐻 < 1 , indicating that long memory 
persistent of a time series is strong.   
 

2.4 Autoregressive Integrated Moving 
Average (ARIMA) Model 

 
The ARIMA model pioneered by Box and Jenkins 
[22] is a widely recognized statistical forecasting 
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model that predicts future observations of a time 
series on the basis of some linear function of 
past values and white noise terms. The 
stationary ARMA(𝑝, 𝑞)  process after being 
differenced 𝑑 times is denoted by ARIMA(𝑝, 𝑑, 𝑞): 
   

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜇 + 𝜃𝑞(𝐵) 𝜀𝑡 

 
Where, 𝜇  is the mean of the series, 𝑦𝑡  is the 

observed time series values at time 𝑡 ; 𝜙𝑝(𝐵) =

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝) and 𝜃𝑞(𝐵) = (1 +

𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞)  are the stationary 

autoregressive operator and moving average 
operator respectively in which 𝜙𝑖(𝑖 =  1,2, … … , 𝑝) 

and θ𝑗  ( 𝑗 =  1,2, … … , 𝑞 ) are the Autoregressive 

and Moving Average coefficients respectively; 𝑝 
and 𝑞  are integers and often referred to as 
orders of autoregressive and moving average 
respectively; 𝜀𝑡 is the 𝑡th white noise assumed to 

be independently and 𝐵 is the backshift operator 
(𝐵𝑦𝑡 = 𝑦𝑡−1). If the series is not stationary, the 

first difference 𝛥𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡 − 𝐵𝑦𝑡 = (1 −
𝐵)𝑦𝑡  or higher-order differences 𝛥𝑑𝑦𝑡 =
(1 − 𝐵)𝑑𝑦𝑡 will produce a stationary time series. 
Differencing is done until a plot of the data 
indicates the series varies about a fixed level, 
and the graph of ACF either cuts off fairly quickly 
or dies down fairly quickly.  
 

2.5 Autoregressive Fractionally 
Integrated Moving Average 
(ARFIMA) Model 

 
The ARIMA model, which has been widely used 
to forecast social, economic, agricultural, 
engineering, and financial problems [22], can 
only capture the short-range dependence (SRD) 
property, but many practical agricultural data 
sets, principally commodity prices data, show the 
typical feature of a long memory process. 
Therefore, we need a model that has the long 
memory property. There is a family of models 
that satisfy this property by generalizing the 
ARIMA (𝑝, 𝑑, 𝑞) model. Generalizing, the degree 

of differencing 𝑑  is not restricted to integer 
values, but can take any real value. For 
reasonable values of 𝑑, especially 0 <  𝑑 < 1/2, 
we find that these 'fractionally differenced' 
processes can be modelled for long-term 
persistence. The ARFIMA (𝑝, 𝑑, 𝑞)  model was 
established by Granger and Joyeux [23] and 
Hosking [24] as a generalized version of                 
the ARIMA (𝑝, 𝑑, 𝑞)  model which is given as           
follows: 
 
𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝜀𝑡             for 0 <  𝑑 <  1/2  

The process of establishing an ARFIMA model 
consists of three steps. First, we test long-term 
memory on time series and determine the 
fractional differencing parameter 𝑑 . Second, 
impose a fractional differencing on the series and 
get the ARMA process. Third, determine the 
other two orders of the ARFIMA (𝑝, 𝑑, 𝑞) model, 

namely 𝑝 and 𝑞. After determining the fractional 

differencing 𝑑 , we get the time series of the 

fractional differentiation as 𝑤𝑡 = (1 − 𝐵)𝑑𝑦𝑡 ; 
where 𝑤𝑡 is the fractional differenced time series 

and 𝐵  is the lag operator, and the fractional 
difference operator defined by the binomial 
expansion. The partial auto correlation function 
(PACF) is most useful for identifying the order (𝑝) 
of an autoregressive model, while the 
autocorrelation function (ACF) is most useful for 
identifying the order ( 𝑞 ) of a moving average 
model and can be chosen as [25]: if spikes decay 
towards zero in the ACF plot and spikes cutoff to 
zero in the PACF plot, we choose the AR (𝑝) 
model. Similarly, if Spikes cutoff to zero in the 
ACF plot and spikes decay towards zero in the 
PACF plot, we choose the MA(𝑞) model. 
 

2.6 Long Memory Parameter Estimation  
 

We deal with some well-known estimation 
methods of long memory parameter ( 𝑑 ) to 

estimate �̂�  which are the R/S Hurst exponent 
method, the semiparametric methods (i.e., 
Geweke and Porter–Hudak (GPH), Smoothed 
periodogram (Sperio), Local Whittle methods) 
and Wavelet Estimator.  
 

2.6.1 Hurst rescaled range analysis (R/S) 
method 

 

The British hydrologist Hurst [21] was the first to 
study the long memory characteristics in a 
system, defining the Hurst parameter based on 
rescaled range (R/S) analysis. He used Hurst 
index (𝐻) to depict the long memory strength of a 
time series. The two parameters Hurst exponent 
𝐻   and long memory parameter 𝑑  are closely 
related through the simple formula [26]: 
 

𝑑 =  𝐻 − 0.5. 
 

This method is considered as heuristic method of 
estimating ARFIMA models. 
 

2.6.2 Geweke and porter-hudak (GPH) method 
 

Geweke and Porter-Hudak [27] proposed the log-
periodogram estimator as one of the earliest 
semiparametric model estimators. The GPH 
estimator is based on a regression model in 
which the spectral density of a process is 
replaced by the logarithm of its periodogram,  
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log (𝐼𝑦(𝜆𝑗)) = α + 𝑑 𝑥𝑗 +  𝑒𝑗 

 

with a constant term α and an error term 𝑒𝑗. The  

𝑥𝑗  is explanatory variable which is given by  

− log [4 sin2 (
𝜆𝑗

2
)]  with the bandwidth 𝑚 ; where, 

𝑚 = 𝑛𝜐, 0 < 𝜐 < 1 and the Fourier frequency 𝜆𝑗 =

2𝜋𝑗 𝑛⁄ ; 𝑗 = 1,2, … … , 𝑚 ; 𝑛  is the number of 

observations. The �̂�𝐺𝑃𝐻 is obtained by minimizing 
the sum of squared residuals of the above 
regression model with respect to the slope 
coefficient. 
 
2.6.3 Reisen smoothed periodogram method 
 
Reisen [28] proposed a modified form of the 
regression method based on a smoothed 
periodogram function. The smoothed 
periodogram function with the parzen lag window 
is used to replace the ordinates in the log 
periodogram regression to obtain the regression 

estimator �̂�𝑆𝑝𝑒𝑟𝑖𝑜 . The bandwidth 𝑚  in the lag 

window generator, also referred as the truncation 
point, is a function of sample size, which is set to 

𝑚 = 𝑛𝛽 , 0 < 𝛽 < 1 . The smoothness of the 

estimate is determined by the truncation point 𝑚. 

The bandwidth g(𝑛)  used in the regression 

equation is chosen similarly to the �̂�𝐺𝑃𝐻  method. 
 
2.6.4 Local Whittle method 
 
The local Whittle estimator is another semi-
parametric estimator that is also commonly used 
to estimate 𝑑 . Kuensch [29] proposed this 
estimator, which Robinson [30] modified.  The 

local Whittle estimator �̂�𝐿𝑊  of fractional 
differencing parameter 𝑑  is obtained by 
maximizing the local Whittle log likelihood at 
Fourier frequencies close to zero, 
 

𝑓(𝜆)~𝐺𝜆1−2𝑑 𝑖𝑓 𝜆 ⟶ 0 
 

Where, 𝐺  is a constant. This computation 

includes an additional parameter 𝑚  (an                  

integer less than 𝑛/2 ) that controls the                  
number of frequencies included in the local 
likelihood. 
 
2.6.5 Wavelet-ordinary least squares 

estimator 
 
The maximum overlap discrete wavelet transform 
(MODWT) is a modified DWT that avoids the 
subsampling process and provides a higher level 
of information in the resulting scaling coefficient 
and wavelet coefficient compared to the DWT 

[31]. The MODWT calculates the scaling 
coefficient 𝑉𝜙(𝑚, 𝑛)  and wavelet coefficient 

𝑊𝜓(𝑚, 𝑛)  by applying low-pass and high-pass 

filters, respectively, to the original dataset. In 
MODWT, the largest level of decomposition is 
commonly selected such that 𝐽0 ≤ log2(𝑁)   in 
order to preclude decomposition at scales               
longer than the total length of the time                  
series.  
 

The algorithm based on wavelet is used to 
estimate the long memory parameter of the 
ARFIMA model [32]. Let 𝑦𝑡  be a mean zero 
fractionally differenced 𝐼(𝑑) process with 0 < 𝑑 <
0.5 .  Using the autocovariance function of the 

𝐼(𝑑) process, Jensen [32] found that as 𝑗 ⟶ 0, 

the wavelet coefficients, 𝑊𝜓(𝑚, 𝑛) ; where 𝑚  is 

scale parameter and 𝑛 is translations parameter, 
associated with a mean zero 𝐼(𝑑) process with 

0 < 𝑑 < 0.5 are distributed 𝑁(0, 𝜎22−2𝑚𝑑); where 

𝜎2 is a finite constant. The wavelet coefficients 
from a fractionally differenced 𝐼(𝑑) process have 

a variance 𝑅(𝑚) that is a function of the scaling 

parameter 𝑚 , but is independent of the 

translation parameter 𝑛 . The correlation of the 
wavelet coefficients from an 𝐼(𝑑) process decay 
exponentially over time and scale. Hence, define 
𝑅(𝑚) to be the variance of wavelet coefficients at 

scale 𝑚 , i.e., 𝑅(𝑚) = 𝜎22−2𝑚𝑑 . Taking the 
logarithmic transformation of 𝑅(𝑚), we obtain the 

relationship ln 𝑅(𝑚) = ln 𝜎2 − 𝑑 ln 22𝑚 . Where ln 

𝑅(𝑚)  is linearly related to ln 2−2𝑚  by the 
fractional differencing parameter, 𝑑. Hence, the 

unknown 𝑑  of a fractionally differenced series 
can be estimated by the ordinary least squares 

estimator �̂�𝑊𝑎𝑣𝑒𝑙𝑒𝑡 [15].  
 

2.7 Information Criteria and Accuracy 
Measures 

 

Model selection has become an important focus 
in recent years in statistical modelling. Many 
tools for identifying the “best model” among a set 
of candidates have been suggested in the 
literature. In this paper, we used two widely 
applied criterion Akaike information criterion 
(AIC) and the Bayesian information criterion 
(BIC) to select the best model among a set of 
candidate models: 
 

Akaike’s Information criteria (AIC) = 
 

𝑛 𝑙𝑛(𝑆𝑆𝐸) − 𝑛 𝑙𝑛(𝑛) + 2(𝑘 + 1) 
 

Bayesian Information criteria (BIC) = 
 

𝑛 𝑙𝑛(𝑆𝑆𝐸) − 𝑛 𝑙𝑛(𝑛) + (𝑘 + 1) 𝑙𝑛(𝑛) 
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Table 1. List of variables used in the study 
 

Variable Description 

𝑦𝑡, 𝑦𝑖 Response variable (Observed jute price data in Rupees/quintal) 

𝑦𝑡−𝑖 Response variable at time 𝑡 − 𝑖 
𝑦�̂� Predicted value of response variable 

𝑇𝑡 Vector of deterministic terms 

𝑤𝑡 Fractional differenced Response variable 

𝑝 Order of an autoregressive model 

𝑞 Order of a moving average model 

𝑑 Order of differencing 

𝑥𝑗 Explanatory variable 

𝜆𝑗 Fourier frequency 

𝑁 Length of response variable 

𝑛 Sample size of response variable 

𝑚 Contiguous sub-periods of response variable 

𝑘  Number of predictor terms 

𝐽0 Largest level of decomposition 

𝑒𝑗 , 𝜀𝑡 White noise 

 
Where, 𝑛  is sample size and 𝑘 is number of 

predictor terms so (𝑘 + 1)  is total number of 
parameters in the model being evaluated. The 
model with the lowest AIC and BIC values are 
treated as the best model. Furthermore, the 
RMSE, MAE and MAPE are used as an accuracy 
measure to evaluate the performance of the 
models: 
 

Root Mean Square Error (RMSE) = 
 

√∑
(𝑦𝑖 − �̂�𝑖  )

2

𝑛

𝑛

𝑖=1

 

 

Mean Absolute Error (MAE) = 
 

∑ |𝑦𝑖 − �̂�𝑖  |
𝑛
𝑖=1

𝑛
 

 

Mean Absolute Percentage Error (MAPE) = 
 

100

𝑛
∑ |

𝑦𝑖 − �̂�𝑖  

𝑦𝑖

|

𝑛

𝑖=1

 

 

Where, 𝑦𝑖  and �̂�𝑖  are the actual                             
value and predicted value of response              
variable. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Primary Statistical Analysis 
 
The weekly series of jute prices for the Samsi 
market of Malda district is shown in Fig. 1. The 
Samsi market series depicts an up-and-down 
pattern, with two sharp rises between 2015 and 
2018, and another between 2021 and 2022. The 
descriptive statistics to summarize                                   
information from the weekly jute price data are 
listed in Table 2. As Table 2 shows, the                                        
series of jute prices in the Samsi market has a 
mean of 3655, a standard deviation of 1385.54 
and, 37.90% coefficient of variation, suggesting 
that it has been volatile. In addition,               
skewness and kurtosis statistics show that the 
price series is positively skewed and leptokurtic 
in nature, i.e., the series is not normally 
distributed. 

 
 

Fig. 1. Weekly jute price series for the Samsi market, including all breaks and confidence 
intervals 
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Table 2.  Descriptive statistics 
 

No. of 
observations 

Min Max Mean Median SD CV (%) Skewness Kurtosis 

668 1650 7836 3655 3186 1385.54 37.90 0.95 3.24 
 

Table 3. Testing for stationarity 
 

ADF test PP test 

Test statistic Lag order 𝒑-value Test statistic Lag order 𝒑-value 

-2.3166 8 0.4440 -9.5586 6 0.5770 

Notes: 𝑝-values < 0.05: Significant at 5% level and 𝑝-values > 0.05: non-significant at 5% level 

 
To begin with the implementation of ARIMA and 
ARFIMA models, the data series are divided into 
two sets: the training set and the testing set. 
First, the model is fitted using the training data 
set, and then it is predicted over the validation 
period. Out of 668 total observations, the first 
534 observations (1st week, 2009 to 6th week, 
2020) are used for the training set data, and the 
last 134 observations are used for model 
validation purpose (7th week, 2020 to 44th week, 
2022). 
 

3.2 Test for Stationarity 
 
The first step in applying ARIMA and ARFIMA 
models is to check whether the time series is 
stationary or not. In order to test for stationarity, 
we first conducted Augmented Dickey-Fuller and 
Phillips-Perron unit root tests on the training 
dataset of the series, and the results of these 
tests are given in Table 3. According to the 
results, the value of the Augmented Dickey-Fuller 
test statistic has been found to be -2.3166 with 
lag order 8, whereas the Phillips-Perron test 
statistic has been found to be -9.5586 with lag 

order 6. The 𝑝 -value are 0.444 and 0.577, 
respectively, which indicate that the time series 
analyzed is clearly non-stationary. Analysis of 
time-series observations with unit root (non-
stationary) could lead to spurious results. The 
study, therefore, proceeded to find the stationary 
series. 
 

3.3 Test for Long Memory and Estimation  
 

The presence of long memory in a time series 
(training set) was confirmed by investigating the 
autocorrelation function (ACF) plot of the data 
series and using the Hurst rescaled range (R/S) 
analysis. The autocorrelation function plot (Fig. 
2) up to 200 lags shows that the correlations 
decay very slowly towards zero (they look closer 
to hyperbolic than exponential), indicating the 
presence of long memory processes. 
Accordingly, the presence of long memory is 
tested as discussed in Section 2.3, and it is 
found that the R/S Hurst value ( 𝐻 = 0.848) is 
higher than 0.5, which firmly concludes the 
existence of the long memory characteristic of 
the jute prices.  

 

 
 

Fig. 2. ACF plot of the weekly series of jute prices 
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Table 4. Estimate of long memory parameter by different methods 
 

�̂�𝑹/𝑺 �̂�𝑮𝑷𝑯 �̂�𝑺𝒑𝒆𝒓𝒊𝒐 �̂�𝑳𝑾 �̂�𝑾𝒂𝒗𝒆𝒍𝒆𝒕 

0.348 0.291 0.487 0.461 0.311 

 

 
 

 

  
 

  
 

Fig. 3. Fractional difference series and first order difference series 
 

Table 5. Stationary test for the fractional difference series and first order difference series 
 

Method Test for 𝒁𝒕 and (𝒁𝒕
𝟏) series Test statistic Lag order 𝒑-value 

�̂�𝑹/𝑺 (0.348) ADF test -3.50 7 0.042 
PP test -89.61 6 0.010 

�̂�𝑮𝑷𝑯 (0.291) ADF test -3.45 5 0.047 
PP test -59.64 6 0.010 

�̂�𝑺𝒑𝒆𝒓𝒊𝒐 (0.487) ADF test -3.95 8 0.011 
PP test -216.47 6 0.010 

�̂�𝑳𝑾 (0.461) ADF test -3.83 8 0.017 
PP test -186.99 6 0.010 

�̂�𝒘𝒂𝒗𝒆𝒍𝒆𝒕 (0.311) ADF test -3.56 5 0.037 
PP test -68.875 6 0.010 

𝒅(1) ADF test -3.56 5 0.037 
PP test -588.72 6 0.010 

Notes: 𝑝-values < 0.05: Significant at 5% level and 𝑝-values > 0.05: non-significant at 5% level 
 

The models that consider the long memory 
property are very sensitive to estimation of the 
long-memory parameter 𝑑  (i.e., the fractional 

differencing parameter), and for this reason, in 
this study, it has been estimated by using the five 
estimation procedures: R/S Hurst exponent 
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analysis (𝑑𝑅/𝑆), GPH method (𝑑𝐺𝑃𝐻 ), smoothed 

periodogram method ( 𝑑𝑆𝑝𝑒𝑟𝑖𝑜 ), local whittle 

method (𝑑𝐿𝑊), and wavelet-based ordinary least 

squares estimator ( 𝑑𝑊𝑎𝑣𝑒𝑙𝑒𝑡 ). The results are 
reported in Table 4. 
 
After determining the fractional differencing 
parameters 𝑑𝑖 , we obtained the fractional and 
first-order differencing time series shown in Fig. 
3. Table 5 shows the stationary test results for 
the fractional difference series (𝑍𝑡) and first order 

difference series (𝑍𝑡
1). The 𝑝-values of the ADF 

and PP tests are less than 5%, which reveal the 
series has become stationary after computing for 
the fractional difference and first-order difference, 
which is also confirmed by Fig. 3. 
 

3.4 Model Identification 
 
To establish ARIMA(𝑝, 𝑑, 𝑞)  and ARFIMA(𝑝, 𝑑, 𝑞) 

models, the values of  𝑝 , 𝑞  and 𝑑  must be 
determined. In the above section, we have 
identified the value of 𝑑 using different methods. 
Now in this section, we are going to find the 
optimal value of 𝑝  and 𝑞  which are order of 
autoregressive and moving average terms. We 
used the training set as in-sample data for the 
determination of the parameters  𝑝  and 𝑞  of the 
ARIMA and ARFIMA models. First, we computed 
the values of autocorrelation and partial 
autocorrelation for fractionally differenced series 
and first-order differenced time series, as 
illustrated in Figs. 4-9. On computation of ACF 
and PACF for each estimated difference 
parameter, it is observed that the decay rate of 
ACF has improved as compared to the decay of 
ACF in the actual training set (Figs. 4-8). The 
orders of non-seasonal parameters 𝑝 and 𝑞  are 
obtained by looking for significant spikes in 
autocorrelation and partial autocorrelation 
functions. Whereas Figs. 4-8 show that ACF 
drops slowly, this shows that the AR model will 
be used as an estimate in this case. 
 
In the identification stage, we estimated different 
ARIMA and ARFIMA specifications with different 
combinations of  𝑝 (AR terms) and 𝑞 (MA terms) 
that we have chosen, as well as compared the 
fractional difference parameters 𝑑𝑖  which are 
listed in Table 6, and selected the appropriate 
model from each method as having the minimum 
values of AIC and BIC. As expected, the AR 
based models are more accurate than the other 

models. Thus, the models selected for the 
training period according to each method are 
ARFIMA (3,0.348,0), ARFIMA (3,0.291,1), 
ARFIMA (2,0.487,0), ARFIMA (3,0.461,0), 
ARFIMA (2,0.311,0), and ARIMA (2,1,1). 
 

3.5 Validation and Diagnostic Checking 
 

After appropriate ARFIMA and ARIMA models 
have been obtained, the next step is to see their 
ability to forecast the data. The model verification 
process is concerned with examining residuals 
obtained from fitted models to see if they contain 
any systematic pattern that could still be 
removed to improve the chosen models. This has 
been done through the Ljung-Box diagnostic test, 
and it is found that the 𝑝-value of the Ljung-Box 
test is more than 5% except for ARFIMA 
(2,0.487,0) (Table 7), which means that the 
model residual meets the assumption of white 
noise residuals. The evaluation of forecasting 
performance has been done for the test set as an 
out of-sample period of 134 observations (i.e., 
134 weeks). Table 6 represents the results of the 
models based on the three different accuracy 
performance measures: RMSE, MAE, and 
MAPE.  
 
As shown in Table 7, comparing the validation 
results of all six models, it is observed that the 
smoothed periodogram method based ARFIMA 
(2,0.487,0) model presents the lowest RMSE 
(200.741) value while wavelet method based 
ARFIMA (2,0.311,0) model presents the lowest 
MAE (108.941), and MAPE (1.920) values. It can 
be concluded that the wavelet method based 
ARFIMA (2,0.311,0) model is the most accurate 
compared to other models, where predictions 
indicate that there are narrow variations between 
the actual and predicted values of jute prices 
(Fig. 10).  The strength of the ARIMA model in 
forecasting jute prices in the Samsi market is 
considerable, but Table 7 shows that the ARIMA 
does not perform well. That the most accurate 
model is conclude to forecast the weekly jute 
prices in the Samsi market of Malda district is the 
ARFIMA (2,0.311,0) model, The parameter 
estimates of ARFIMA models for Samsi market 
along with their standard errors, 𝑡-values and 𝑝-
values are given in Table 8. The ARFIMA 
(2,0.311,0) model with parameters as shown in 
Table 8 is written as: 
 
(1 − 0.677𝐵 − 0.276𝐵2)(1 − 𝐵)0.311𝑦𝑡 = 1684.069 + 𝜀𝑡 
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Fig. 4. ACF and PACF plot of R/S Hurst method based fractional difference series 
 

 
 

Fig. 5. ACF and PACF plot of GPH method based fractional difference series 
 

 
 

Fig. 6. ACF and PACF plot of smoothed periodogram method based fractional difference series 
 

 
 

Fig. 7. ACF and PACF plot of Local Whittle method based fractional difference series 
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Fig. 8. ACF and PACF plot of Wavelet method based fractional difference series 
 

 
 

Fig. 9. ACF and PACF plot of first order difference series 
 

 
 

Fig. 10. Plot of ARFIMA (2,0.311,0) with training and validation periods 
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Table 6. AIC and BIC values of the ARFIMA and ARIMA models 
 

�̂�𝑹/𝑺 = 0.348 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝒑, 𝟎. 𝟑𝟒𝟖, 𝒒) 

�̂�𝑮𝑷𝑯= 0.291 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝒑, 𝟎. 𝟐𝟗𝟏, 𝒒) 

�̂�𝑺𝒑𝒆𝒓𝒊𝒐= 0.487 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝒑, 𝟎. 𝟒𝟖𝟕, 𝒒) 

Model AIC BIC Model AIC BIC Model AIC BIC 
(1,0.348,0) 6775.283 6792.404 (1,0.291,0) 6763.799 6780.921 (0,0.487,2) 6896.845 6918.247 
(1,0.348,1) 6700.135 6721.537 (1,0.291,1) 6699.999 6721.401 (1,0.487,0) 6784.282 6801.404 
(2,0.348,0) 6731.282 6752.683 (1,0.291,2) 6694.09 6719.773 (2,0.487,0) 6743.28 6764.682 
(2,0.348,1) 6696.381 6722.063 (2,0.291,0) 6723.924 6745.326 (2,0.487,1) 6785.865 6811.547 
(3,0.348,0) 6690.227 6715.909 (2,0.291,1) 6696.447 6722.13 (0,0.487,3) 6816.652 6842.335 
   (3,0.291,1) 6690.21 6720.172    

�̂�𝑳𝑾= 0.461 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝒑, 𝟎. 𝟒𝟔𝟏, 𝒒) 

�̂�𝒘𝒂𝒗𝒆𝒍𝒆𝒕= 0.311 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝒑, 𝟎. 𝟑𝟏𝟏, 𝒒) 

𝑨𝑹𝑰𝑴𝑨 (𝒑, 𝟏, 𝒒) 

Model AIC BIC Model AIC BIC Model AIC BIC 
(1,0.461,0) 6785.087 6802.209 (0,0.311,1) 7234.237 7251.359 (1,1,1) 6684.1 6696.93 
(1,0.461,1) 6699.315 6720.717 (0,0.311,2) 7119.326 7140.728 (2,1,1) 6669.65 6686.76 
(1,0.461,2) 6694.701 6720.383 (1,0.311,0) 6768.178 6785.3 (1,1,2) 6671.72 6688.84 
(2,0.461,0) 6742.012 6763.414 (2,0.311,0) 6726.569 6747.971 (2,1,2) 6671.3 6692.69 
(3,0.461,0) 6693.78 6719.462 (0,0.311,3) 6991.438 7017.12 (3,1,2) 6669.89 6695.56 
(2,0.461,1) 6696.128 6721.81    (2,1,0) 6680.19 6693.02 
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Table 7. Validation of estimated models 
 

Method MAE RMSE MAPE Ljung-Box test 

�̂�𝑅/𝑆 = 𝟎. 𝟑𝟒𝟖 (0.161)* 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝟑, 𝟎. 𝟑𝟒𝟖, 𝟎) 

114.593 208.671 2.010 0.027 [0.87] 

�̂�𝐺𝑃𝐻 = 𝟎. 𝟐𝟗𝟏 (0.094)** 
𝑨𝑹𝑭𝑰𝑴𝑨 (𝟑, 𝟎. 𝟐𝟗𝟏, 𝟏) 

113.204 208.316 1.980 0.068 [0.79] 

�̂�𝑆𝑝𝑒𝑟𝑖𝑜 = 𝟎. 𝟒𝟖𝟕 (0.049)** 

𝑨𝑹𝑭𝑰𝑴𝑨 (𝟐, 𝟎. 𝟒𝟖𝟕, 𝟎) 

110.703 200.741 1.940 5.846 [0.02] 

�̂�𝐿𝑊 = 𝟎. 𝟒𝟔𝟏 (0.121)** 
𝑨𝑹𝑭𝑰𝑴𝑨 (𝟑, 𝟎. 𝟒𝟔𝟏, 𝟎) 

113.421 207.922 1.990 0.170 [0.68] 

�̂�𝑤𝑎𝑣𝑒𝑙𝑒𝑡 = 𝟎. 𝟑𝟏𝟏 (0.119)** 
𝑨𝑹𝑭𝑰𝑴𝑨 (𝟐, 𝟎. 𝟑𝟏𝟏, 𝟎) 

108.941 201.623 1.920 3.874 [0.05] 

𝑨𝑹𝑰𝑴𝑨 (𝟐, 𝟏, 𝟏) 115.564 211.113 2.036 0.004 [0.95] 
Notes: * Significant at 5%; ** significant at 1%; the value in the parenthesis is the SE of coefficient: 𝑝-values of 

the Ljung & Box statistics are reported between square brackets. The 𝑝-values < 0.05: Significant at 5% level and 

𝑝-values > 0.05: non-significant at 5% level 

 
Table 8. Parameter estimates of ARFIMA (2,0.311,0) model 

 

Parameter Estimate Std. Error 𝒕-values 𝒑-values 

Constant 1684.069 114.689 14.684 0.000 

�̂�𝑤𝑎𝑣𝑒𝑙𝑒𝑡 0.311 0.119 2.622 0.009 

AR(1) 0.677 0.070 9.628 0.000 
AR(2) 0.276 0.029 9.468 0.000 

Notes: 𝑝-values < 0.05: Significant at 5% level and 𝑝-values > 0.05: non-significant at 5% level 

 

4. CONCLUSION AND IMPLICATIONS 
 
The aim of this paper was to introduce an 
appropriate model for modeling and forecasting 
the weekly jute prices in the Samsi market of 
Malda district, for this purpose, an ACF plot and 
Hurst rescaled range (R/S) analysis are 
employed to identify the long memory behavior of 
series. The presence of long memory found in 
jute price series indicates that it would be better 
to develop and employ ARFIMA models. We 
considered the Hurst exponent, semiparametric, 
and wavelet methods for estimating the fractional 
difference parameter 𝑑 . ARIMA and ARFIMA 
models are fitted to the jute price series, and the 
models selected according to each method are 
ARFIMA (3,0.348,0), ARFIMA (3,0.291,1), 
ARFIMA (2,0.487,0), ARFIMA (3,0.461,0), 
ARFIMA (2,0.311,0), and ARIMA (2,1,1) on the 
basis of the minimum AIC and BIC value. A 
comparative study has been made among the 
performances of different estimation procedures 
of the fractional difference parameter 𝑑  along 
with forecasting performances between the 
ARIMA and ARFIMA models, and it is found that 
the wavelet method based ARFIMA (2,0.311,0) 
model outperforms the other methods and best 
fitted ARIMA model in terms of the MAE, RMSE, 
and MAPE criteria. Hence, it is evident that long 

memory plays an important and dominant role in 
describing and modeling the jute prices. The 
results show that the wavelet method for 
estimating 𝑑  is more accurate than the other 
methods, similar result has been found by Paul 
et al. [27] when carried out long memory studies 
in both simulation as well as in real data set. 
Validation results show that the forecasting 
performance of the ARFIMA model is strongly 
better than that of the model that is also 
concluded by Erfani and Samimi [6],                      
Mohamed [23]. Finally, the ARFIMA (2,0.311,0) 
model is found to be the best optimal                          
model to forecast the jute prices for the Samsi 
market. 
 
The model demonstrated good performance in 
terms of explained variability and predicting 
power. The comparative study between the 
ARFIMA model and the ARIMA model                   
revealed that the ARFIMA model is a much 
better model, and it was concluded that the 
ARFIMA model could be used successfully                    
for modelling as well as forecasting,                    
especially for data with the long memory 
property. Again, the information obtained from 
this study can be utilized for agriculture                  
planning with regard to the jute crop in Malda 
district. 
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