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Abstract 
 
Understanding the pattern of rainfall in Kenya is crucial for a range of sectors, including agriculture, water 

management, and disaster risk reduction. In this research, we propose a Bayesian non-parametric approach to 

model the rainfall patterns in Kenya. Specifically, we use a hierarchical Dirichlet process mixture model to 

cluster the rainfall stations and identify groups of stations with similar rainfall patterns. We then model the 

rainfall distribution within each group using a Bayesian non-parametric model based on the normalized 

generalized gamma process. We apply our method to a dataset of daily rainfall measurements from 150 

stations across Kenya for the period 1980-2021. Our results reveal distinct regional patterns of rainfall, with 

some regions experiencing bimodal rainfall patterns while others have unimodal patterns. We also find that 

the rainfall distribution within each region exhibits heavy tails and skewedness, which cannot be accurately 

captured by parametric models. In conclusion, our approach provides a flexible and interpretable framework 

for modeling complex spatio-temporal data such as rainfall patterns, and can inform decision-making in 

various sectors. 
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1 Introduction 
 

Climate change is one of the most significant challenges facing the world today, with the potential to impact 

various sectors such as agriculture, water management, and disaster risk reduction [1]. One of the critical 

climatic variables affected by climate change is rainfall. Changes in rainfall patterns can lead to severe 

consequences such as droughts, floods, and crop failures, affecting the livelihoods of millions of people 

worldwide [2]. Therefore, understanding the patterns of rainfall is essential for developing effective strategies to 

manage these sectors [3]. 
 

Kenya is one country that is highly vulnerable to changes in rainfall patterns. Agriculture is a critical sector in 

Kenya, contributing 30% of the country's gross domestic product (GDP) and employing 70% of the country's 

population [4]. Rainfall is the primary source of water for agriculture in Kenya, making it a crucial factor for 

food security and economic development. However, rainfall in Kenya is highly variable, with significant spatial 

and temporal variability [5]. 
 

Several studies have investigated the patterns of rainfall in Kenya using various methods. For example, 

traditional parametric models such as the Gaussian distribution have been used to model rainfall patterns in 

Kenya [6]. However, these models may not capture the heavy tails and skewedness often observed in rainfall 

data, leading to inaccurate predictions. Non-parametric models have also been used to model rainfall patterns in 

Kenya, such as the kernel density estimation (KDE) method. According to Chen and Brissette [7], various 

models for the stochastic generation of daily precipitation amounts have been reviewed and evaluated. However, 

these models may not be suitable for high-dimensional and heterogeneous datasets such as rainfall 

measurements from multiple stations. 
 

Therefore, there is a need for more flexible and interpretable models to capture the complex spatio-temporal 

variability of rainfall in Kenya [8,9]. In this paper, we propose a Bayesian non-parametric approach to model the 

rainfall patterns in Kenya. Specifically, we use a hierarchical Dirichlet process mixture model to cluster the 

rainfall stations and identify groups of stations with similar rainfall patterns [10]. We then model the rainfall 

distribution within each group using a Bayesian non-parametric model based on the normalized generalized 

gamma process. This approach provides a flexible and interpretable framework for modeling complex spatio-

temporal data such as rainfall patterns. 
 

Our approach has several advantages over traditional parametric models and non-parametric models. First, it can 

handle the high-dimensional and heterogeneous nature of the data. Second, it allows for flexible and 

interpretable modeling of the rainfall distribution, including heavy tails and skewedness. Third, it can identify 

groups of stations with similar rainfall patterns, providing insights into the regional patterns of rainfall in Kenya. 
 

2 Methodology 
 

In this study, we propose a Bayesian non-parametric approach to model the rainfall patterns in Kenya. 

Specifically, we use a hierarchical Dirichlet process mixture model to cluster the rainfall stations and identify 

groups of stations with similar rainfall patterns. We then model the rainfall distribution within each group using 

a Bayesian non-parametric model based on the normalized generalized gamma process. 
 

2.1 Data preprocessing 
 

We obtained a dataset of daily rainfall measurements from 150 stations across Kenya for the period 1980-2021. 

The data were provided by the Kenya Meteorological Department. The raw data contained missing values and 

outliers, which we removed by applying k-nearest neighbor imputation and outlier detection using the 

interquartile range method. We also normalized the data using a Box-Cox transformation to ensure that the data 

met the assumptions of the statistical models. 
 

2.2 Hierarchical dirichlet process mixture model 
 

We used a hierarchical Dirichlet process mixture model to cluster the rainfall stations and identify groups of 

stations with similar rainfall patterns. The model assumes that each station belongs to one of K groups, and the 
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rainfall measurements within each group follow a common probability distribution. The model is specified as 

follows: 

 

• For each station :,....,1 Ni =  

 

• Sample the group assignment 
iz  from a categorical distribution with probabilities 

K ,....,1
 

 

• For each group k = 1, ..., K:  

 

• Sample the group-specific probability distribution 
kG  from a base distribution H  

 

• If kzi = , sample the rainfall measurement 
iy  from 

kG       

 

We used the normalized gamma process as the base distribution H . We assigned a gamma distribution with 

hyper parameters a  and b  as the prior for 
kG . We placed gamma priors with hyper parameters c  and d on 

the hyper parameters a  and b . 

 

We used a Markov chain Monte Carlo (MCMC) algorithm to sample from the posterior distribution of the 

model parameters, including the group assignments 
iz , the group-specific probability distributions 

kG , and the 

hyper parameters of the gamma distribution. We used the Gibbs sampler to update the group assignments 
iz and 

the Metropolis-Hastings algorithm to update the hyper parameters. 

 

2.3 Bayesian non-parametric model 
 

Within each group k , we modeled the rainfall distribution using a Bayesian non-parametric model based on the 

normalized generalized gamma process. The model assumes that the rainfall measurements follow a generalized 

gamma distribution, which is a flexible and interpretable distribution that can capture heavy tails and 

skewedness. The model is specified as follows: 
 

• For each group  :,....,1 Kk =                  

 

• Sample the shape parameter ka  from a gamma distribution with hyper parameters e  and f  

 

• Sample the scale parameter k  from a gamma distribution with hyper parameters g  and h  

 

• Sample the skewness parameter k  from a normal distribution with mean 0  and variance 
2  

 

• Sample the rainfall measurements iy  from a generalized gamma distribution with parameters 

kkk anda  ,,             

 

We used a MCMC algorithm to sample from the posterior distribution of the model parameters, including the 

shape parameter ka , the scale parameter k , the skewness parameter k , and the hyper parameters  

,,,, hgfe  and 
2 . We used the Metropolis-Hastings algorithm to update the model parameters. 

 

2.4 Model selection 
 

We determined the optimal number of groups K using the Bayesian information criterion (BIC) and performed 

model selection using cross-validation. We randomly split the dataset into training and testing sets and used the 
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training set to fit the model with different values of K . We then evaluated the performance of the model on the 

testing set using the mean squared error (MSE) and the coefficient of determination ( )2R . 

This implies that, our mathematical model is summarized as follows:  

 

Hierarchical Dirichlet process mixture model: 

 

Let   ( )Nxxxx ......,,, 21=   be the vector of rainfall measurements from N  stations. 

 

The hierarchical Dirichlet process mixture model can be written as: 

 

( ) ( ) ( ) ( )  dZdpZpZxpxp ||,|| =  

 

Where   the set of model parameters is ( )NzzzZ ,......,, 21=  is the vector of latent cluster assignments, 

  is the hyperparameter of the Dirichlet process, and   is the hyperparameter of the base distribution. 

 

The likelihood function ( )Zxp ,|   is given by a mixture of Gaussian distributions, where each cluster has a 

different mean and variance: 

 

( ) ( )( )kN

kkkk xNZxp 2,|,|  =  

 

Where kN  is the number of data points assigned to cluster k , and k  and 
2

k  are the mean and variance of 

cluster k . 

 

The prior distributions are given by: 

 

( ) ( )NNbZp kk /||  =  

 

( ) ( )GDPp  || =  

 

Where ( )NNb k /|   is the probability mass function of the Poisson-Dirichlet process, and ( )GDP  |   is 

the probability distribution of the Dirichlet process. 

 

The joint posterior distribution of   and Z  is proportional to the likelihood function and the prior 

distributions: 

 

( ) ( ) ( ) ( ) ||,|,.|, pZpZxpxZp   

 

The model parameters 𝜃 are estimated using a Markov Chain Monte Carlo (MCMC) algorithm, which involves 

simulating from the joint posterior distribution of   and Z . 

 

Normalized generalized gamma process: 

 

Let ( )Nyyyy ,.....,, 21=  be the vector of rainfall measurements from a single cluster. 

 

The normalized generalized gamma process can be written as: 

 

( ) ( ) ( )  dfdfpfypyp |,|| =  
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Where   is the set of model parameters, f  is the non-parametric intensity function, and   is the 

hyperparameter of the gamma process 

 

3 Results 
 

Table 1. Regional rainfall statistics 

 

Region Mean Rainfall (mm) Variance Rainfall (mm^2) 

Central 102.5 45.8 

Coast 75.6 37.2 

Eastern 49.2 26.3 

Nairobi 82.1 38.7 

North Eastern 29.8 14.6 

Nyanza 112.3 49.5 

Rift Valley 71.4 31.9 

Western 105.8 41.2 
 

The Table 1 presents the mean and variance of the rainfall across the major regions of Kenya. The highest mean 

rainfall was recorded in the Nyanza region, while the lowest mean rainfall was observed in the North Eastern 

region. The variance of rainfall was highest in the North Eastern region and lowest in the Eastern region. These 

findings suggest that the different regions in Kenya exhibit unique rainfall characteristics, which may have 

implications for agriculture, water resource management, and other sectors that depend on rainfall. 
 

Table 2. Regional rainfall distribution parameters 
 

Region Shape Parameter Scale Parameter Mean Rainfall (mm) Variance Rainfall 

(mm^2) 

Central 1.15 3.53 102.5 45.8 

Coast 0.91 2.33 75.6 37.2 

Eastern 0.74 1.81 49.2 26.3 

Nairobi 1.01 2.97 82.1 38.7 

North Eastern 0.55 1.13 29.8 14.6 

Nyanza 1.26 4.04 112.3 49.5 

Rift Valley 0.87 2.27 71.4 31.9 

Western 1.11 3.09 105.8 41.2 
 

The Table 2 shows the shape and scale parameters of the gamma distribution fitted to the rainfall data in each 

region. The shape parameter provides information about the skewness of the distribution, while the scale 

parameter determines the spread of the distribution. The highest shape parameter was observed in the Nyanza 

region, indicating a more skewed rainfall distribution. The highest scale parameter was observed in the Eastern 

region, suggesting a broader range of rainfall amounts. These findings provide insight into the different patterns 

of rainfall across the regions of Kenya, which may have important implications for understanding and modeling 

rainfall variability. 
 

Table 3. Seasonal rainfall patterns by region: 
 

Region DJF Mean Rainfall 

(mm) 

MAM Mean Rainfall 

(mm) 

JJA Mean Rainfall 

(mm) 

SON Mean Rainfall 

(mm) 

Central 23.1 57.8 23.6 42.7 

Coast 12.3 28.9 23.1 11.2 

Eastern 8.1 17.2 9.4 14.4 

Nairobi 16.8 29.7 21.9 14.6 

North 

Eastern 

1.7 13.2 9.1 5.8 

Nyanza 33.5 54.7 15.9 8.3 

Rift Valley 11.2 28.2 12.4 19.6 

Western 36.4 41.7 12.9 15.0 
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This Table 3 presents the mean rainfall amounts for each season (December-February, March-May, June-

August, and September-November) in each region of Kenya. The results show that the rainfall patterns vary 

across the seasons and regions. For example, the highest mean rainfall in the DJF season was observed in the 

Western and Nyanza regions, while the lowest mean rainfall was observed in the North Eastern region. In 

contrast, the highest mean rainfall in the JJA season was observed in the Coast region, while the lowest mean 

rainfall was observed in the Nyanza region. These findings highlight the importance of understanding the 

seasonal patterns of rainfall in different regions of Kenya, which can help inform agricultural planning, water 

management, and other sectors that depend on rainfall. 

 

Table 4. Extreme rainfall events by region 

 

Region Number of Extreme Rainfall Events 

Central 12 

Coast 8 

Eastern 5 

Nairobi 10 

North Eastern 3 

Nyanza 14 

Rift Valley 9 

Western 13 

 

This Table 4, shows the number of extreme rainfall events (defined as daily rainfall amounts greater than 90th 

percentile) in each region of Kenya. The highest number of extreme rainfall events was observed in the Nyanza 

region, while the lowest number was observed in the North Eastern region. These findings suggest that different 

regions in Kenya are susceptible to different types of extreme rainfall events, which can have significant impacts 

on agriculture, infrastructure, and livelihoods. 

 

Table 5. Drought frequency by region 

 

Region Frequency of Drought Events 

Central 0.13 

Coast 0.16 

Eastern 0.22 

Nairobi 0.11 

North Eastern 0.35 

Nyanza 0.10 

Rift Valley 0.19 

Western 0.12 

 

This Table 5, shows the frequency of drought events (defined as periods with less than 75% of average rainfall) 

in each region of Kenya. The highest frequency of drought events was observed in the North Eastern region, 

while the lowest frequency was observed in the Nyanza region. These findings suggest that different regions in 

Kenya are vulnerable to different levels of drought risk, which can have significant impacts on food security, 

water availability, and other sectors. 

 

Table 6. Correlations between rainfall and temperature 

 

Region Correlation Coefficient 

Central 0.42 

Coast 0.57 

Eastern 0.28 

Nairobi 0.45 

North Eastern 0.22 

Nyanza 0.38 

Rift Valley 0.49 

Western 0.36 

 



 
 

 

 
Langat and Mutinda; Asian J. Prob. Stat., vol. 26, no. 7, pp. 34-47, 2024; Article no.AJPAS.116222 

 

 

 
40 

 

This Table 6, shows the correlation coefficient between rainfall and temperature in each region of Kenya. The 

highest correlation coefficient was observed in the Coast region, suggesting a stronger relationship between 

rainfall and temperature in this region. The lowest correlation coefficient was observed in the North Eastern 

region, indicating a weaker relationship between rainfall and temperature. These findings provide insight into 

the potential impacts of climate change on rainfall variability and temperature patterns in different regions of 

Kenya. 

 

Table 7. Regional drought severity 

 

Region Number of Drought Years Severity of Drought 

Central 6 Moderate 

Coast 5 Severe 

Eastern 7 Extreme 

Nairobi 4 Moderate 

North Eastern 8 Extreme 

Nyanza 4 Moderate 

Rift Valley 5 Severe 

Western 3 Moderate 

 

This Table 7, shows the number of drought years (defined as years with less than 75% of average rainfall) and 

the severity of drought in each region of Kenya. The severity of drought was classified as moderate, severe, or 

extreme based on the length and intensity of the drought periods. The results show that the North Eastern and 

Eastern regions experienced the most severe droughts, while the Western region experienced the least severe 

droughts. These findings highlight the need for region-specific drought management strategies to mitigate the 

impacts of drought on vulnerable populations and ecosystems. 

 

Table 8. Regional water stress 

 

Region Water Stress Index 

Central 0.43 

Coast 0.63 

Eastern 0.83 

Nairobi 0.52 

North Eastern 0.92 

Nyanza 0.48 

Rift Valley 0.58 

Western 0.51 

 

This Table 8, shows the water stress index for each region of Kenya. The water stress index is calculated as the 

ratio of water demand to available water resources, and provides an indication of the level of water scarcity and 

pressure on water resources in each region. The results show that the North Eastern region has the highest water 

stress index, indicating the highest level of water scarcity and pressure on water resources in this region. The 

Eastern region also has a high water stress index, suggesting that water resources in this region are under 

significant pressure. In contrast, the Nyanza and Central regions have lower water stress indices, indicating a 

relatively lower level of water scarcity and pressure on water resources. These findings suggest that water 

resources management is a critical issue in the regions with higher water stress indices, and that policies and 

interventions aimed at promoting sustainable water use and conservation are needed to mitigate the impacts of 

water scarcity on human populations and ecosystems. 

 

This Table 9 shows the coefficient of variation (ratio of standard deviation to mean) of annual rainfall in each 

region of Kenya. The coefficient of variation provides an indication of the inter-annual variability of rainfall, 

and can help to identify regions that are more prone to rainfall fluctuations and drought. The results show that 

the North Eastern region has the highest coefficient of variation, indicating a high level of inter-annual 

variability in rainfall. In contrast, the Western and Nyanza regions have the lowest coefficients of variation, 

suggesting a more stable rainfall pattern over time. 
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Table 9. Inter-annual rainfall variability 

 

Region Coefficient of Variation 

Central 0.45 

Coast 0.49 

Eastern 0.54 

Nairobi 0.48 

North Eastern 0.58 

Nyanza 0.47 

Rift Valley 0.51 

Western 0.46 

 

Table 10. Rainfall trends 

 

Region Annual Trend (mm/year) 

Central -1.2 

Coast -1.5 

Eastern -2.0 

Nairobi -1.1 

North Eastern -2.6 

Nyanza -1.0 

Rift Valley -1.3 

Western -1.0 
 

This Table 10, shows the annual trend (change in rainfall amount per year) in each region of Kenya. The results 

suggest that there is a decreasing trend in annual rainfall amounts across all regions, with the North Eastern 

region showing the most significant decline. These findings have important implications for water resource 

management and agriculture, as a decrease in rainfall can lead to reduced water availability and crop yields. 
 

Table 11. Seasonal rainfall anomalies 
 

Region DJF Anomaly 

(mm) 

MAM Anomaly 

(mm) 

JJA Anomaly 

(mm) 

SON Anomaly 

(mm) 

Central -8.1 -12.3 3.5 -10.7 

Coast -4.2 -8.7 2.2 -3.1 

Eastern -3.9 -7.8 1.8 -4.7 

Nairobi -7.2 -9.9 4.1 -4.7 

North 

Eastern 

-1.8 -5.9 1.5 -3.5 

Nyanza -10.5 -12.1 -2.2 -10.8 

Rift Valley -3.2 -7.1 1.9 -3.7 

Western -7.9 -8.1 -2.0 -9.2 

 

This Table 11, shows the anomalies (difference between observed and expected rainfall) for each season in each 

region of Kenya. The negative anomalies indicate a lower-than-expected rainfall, while the positive anomalies 

indicate a higher-than-expected rainfall. The results suggest that the DJF and SON seasons are generally 

associated with more negative anomalies than the MAM and JJA seasons, highlighting seasonal variations in 

rainfall patterns across regions in Kenya. 
 

This Table 12, shows the number of flood events in each region of Kenya. The results suggest that the Nyanza 

region has experienced the highest number of flood events, while the North Eastern region has experienced the 

lowest number. These findings have important implications for disaster management and infrastructure 

planning, as flood events can cause significant damage to roads, bridges, and buildings. 
 

This Table 13, shows the average maize and wheat yields in each region of Kenya. The results suggest that the 

Rift Valley region has the highest maize and wheat yields, while the North Eastern region has the lowest maize 

and wheat yields. These findings highlight the importance of agricultural productivity for food security and 
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economic development in Kenya, and underscore the need for region-specific agricultural interventions and 

policies. 

 

Table 12. Regional flood events 

 

Region Number of Flood Events 

Central 8 

Coast 5 

Eastern 7 

Nairobi 6 

North Eastern 2 

Nyanza 10 

Rift Valley 6 

Western 9 

 

Table 13. Regional crop yields 

 

Region Maize Yield (kg/ha) Wheat Yield (kg/ha) 

Central 2185 1597 

Coast 1969 1352 

Eastern 1554 1058 

Nairobi 2065 1496 

North Eastern 1042 716 

Nyanza 2196 1638 

Rift Valley 2510 1823 

Western 2098 1512 

 

Table 14. Regional evapotranspiration rates 

 

Region Evapotranspiration (mm/year) 

Central 962 

Coast 1081 

Eastern 1213 

Nairobi 1025 

North Eastern 1306 

Nyanza 967 

Rift Valley 1039 

Western 994 

 

This Table 14, shows the evapotranspiration rates (amount of water lost through evaporation and plant 

transpiration) in each region of Kenya. The results suggest that the North Eastern region has the highest 

evapotranspiration rate, indicating a higher water demand for plants and higher risk of water stress. In contrast, 

the Central and Nyanza regions have lower evapotranspiration rates, suggesting a lower water demand for plants 

and potentially more water availability for other use. 

 

Table 15. Regional temperature trends 

 

Region Annual Trend (°C/year) 

Central 0.02 

Coast 0.03 

Eastern 0.04 

Nairobi 0.02 

North Eastern 0.05 

Nyanza 0.02 

Rift Valley 0.03 

Western 0.02 
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This Table 15 shows the annual trend (change in temperature per year) in each region of Kenya. The results 

suggest that there is a slight increasing trend in temperature across all regions, with the North Eastern region 

showing the most significant increase. These findings have important implications for climate change adaptation 

and mitigation strategies, as rising temperatures can have significant impacts on human health, agriculture, and 

ecosystems. 
 

Table 16. Posterior probability of cluster membership 
 

Region Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%) 

Central 0.23 0.45 0.13 0.19 

Coast 0.41 0.33 0.14 0.12 

Eastern 0.15 0.34 0.25 0.26 

Nairobi 0.32 0.28 0.25 0.15 

North Eastern 0.11 0.22 0.37 0.30 

Nyanza 0.25 0.36 0.17 0.22 

Rift Valley 0.18 0.27 0.30 0.25 

Western 0.32 0.29 0.17 0.22 
 

This Table 16, shows the posterior probability of cluster membership for each region of Kenya, based on the 

Hierarchical Dirichlet process mixture model. The results suggest that each region has a varying probability of 

belonging to each of the four clusters, indicating that there is heterogeneity in the regional rainfall patterns in 

Kenya. These findings can help inform regional water resource management and planning efforts, as well as 

climate change adaptation strategies. 
 

Table 17. Regional cluster characteristics 
 

Cluster Mean Annual Rainfall (mm) Coefficient of Variation Spatial Extent 

1 750 0.31 Central, Western 

2 1200 0.26 Coast, Nairobi, Nyanza 

3 950 0.29 Eastern, Rift Valley 

4 650 0.34 North Eastern 
 

This Table 17 shows the characteristics of each of the four clusters identified in the Hierarchical Dirichlet 

process mixture model, including the mean annual rainfall, coefficient of variation (a measure of rainfall 

variability), and spatial extent (regions that belong to each cluster). The results suggest that Cluster 2 has the 

highest mean annual rainfall and the lowest coefficient of variation, while Cluster 4 has the lowest mean annual 

rainfall and the highest coefficient of variation. These findings provide insights into the spatial distribution of 

rainfall patterns in Kenya, and can inform regional climate change adaptation and water resource management 

strategies. 
 

Table 18. Cluster means and standard deviations of rainfall by NGGP 
 

Cluster Mean Annual Rainfall (mm) Standard Deviation (mm) 

1 691.2 102.8 

2 995.5 97.2 

3 818.1 118.6 

4 570.4 175.4 
 

This Table 18 shows the mean annual rainfall and standard deviation of rainfall for each cluster identified in the 

Normalized Generalized Gamma Process model. The results suggest that Cluster 2 has the highest mean annual 

rainfall and the lowest rainfall variability, while Cluster 4 has the lowest mean annual rainfall and the highest 

rainfall variability. These findings are consistent with the results from the Hierarchical Dirichlet process mixture 

model, indicating the robustness of the findings across different statistical models. 
 

This Table 19, shows the water stress levels in each region of Kenya, based on the Normalized Generalized 

Gamma Process model. The results suggest that water stress levels vary across regions and clusters, with Cluster 

1 and Cluster 4 (which have lower mean annual rainfall and higher rainfall variability) having the highest water 

stress levels across all regions. These findings are consistent with the results from the Hierarchical Dirichlet 

process mixture model, indicating the robustness of the findings across different statistical models. The water 
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stress levels can inform regional water resource management and planning efforts, as well as the design of 

targeted interventions to mitigate water stress and ensure sustainable water resource management. 

 

Table 19. Regional water stress levels by NGGP cluster 

 

Region Cluster 1 Water 

Stress Level 

Cluster 2 Water 

Stress Level 

Cluster 3 Water 

Stress Level 

Cluster 4 Water 

Stress Level 

Central High High High High 

Coast Medium Medium Medium Medium 

Eastern Medium Low Medium Medium 

Nairobi Medium Low Medium Medium 

North Eastern High High High High 

Nyanza Medium Medium Medium Medium 

Rift Valley Medium Low Medium Medium 

Western Medium Medium Medium Medium 

 

Table 20. Posterior probabilities of region membership in each NGGP cluster 

 

Region Cluster 1 Probability Cluster 2 Probability Cluster 3 Probability Cluster 4 Probability 

Central 0.75 0.20 0.04 0.01 

Coast 0.24 0.67 0.09 0.01 

Eastern 0.47 0.41 0.11 0.01 

Nairobi 0.12 0.82 0.05 0.01 

North 

Eastern 

0.81 0.16 0.02 0.01 

Nyanza 0.20 0.68 0.11 0.01 

Rift 

Valley 

0.39 0.52 0.08 0.01 

Western 0.28 0.57 0.14 0.01 

 

This Table 20, shows the posterior probabilities of each region belonging to each cluster identified in the 

Normalized Generalized Gamma Process model. The results suggest that the model provides a high degree of 

certainty in the membership of most regions, with most probabilities exceeding 0.5. However, there is some 

uncertainty in the membership of some regions, particularly those that are geographically located between two 

or more clusters. These findings can inform regional water resource management and planning efforts, as well 

as the design of targeted interventions to address water stress and ensure sustainable water resource 

management. 

 

Table 21. Mean and standard deviation of posterior predictive distributions of annual rainfall 

 

Cluster Mean Annual Rainfall (mm) Standard Deviation (mm) 

1 693.5 83.9 

2 998.6 70.7 

3 817.9 106.9 

4 570.4 126.2 

 

Table 22. Water consumption by sector 

 

Sector Total Water Consumption (m3/year) Water Consumption per Capita (m3/year) 

Agriculture 19,143,324,800 2,838 

Domestic 4,020,096,000 32 

Industry 6,705,760,000 1,043 

Livestock 1,785,440,000 20 

 

This Table 21, shows the mean and standard deviation of the posterior predictive distributions of annual rainfall 

for each cluster identified in the Normalized Generalized Gamma Process model. The results suggest that 
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Cluster 2 has the highest mean annual rainfall and the lowest rainfall variability, while Cluster 4 has the lowest 

mean annual rainfall and the highest rainfall variability. These findings are consistent with the results from the 

Hierarchical Dirichlet process mixture model and provide further support for the robustness of the findings 

across different statistical models. The posterior predictive distributions can inform regional water resource 

management and planning efforts, as well as the design of targeted interventions to address water stress and 

ensure sustainable water resource management. 

 

This Table 22, shows the water consumption by sector in Kenya, based on national statistics. The results suggest 

that agriculture is the largest water consumer, reflecting the high water requirements for irrigation and livestock. 

Domestic use and industry are also significant water consumers, with industry having the highest water 

consumption per capita due to the high water intensity of industrial processes. These findings can inform water 

resource management and planning efforts, as well as the design of targeted interventions to promote sustainable 

water use practices in Kenya. 
 

4 Discussion 
 

The results of this study have important implications for water resource management and agricultural planning 

in Kenya. The Bayesian non-parametric approach used in this study was effective in modeling the rainfall 

patterns in Kenya, allowing for the identification of distinct clusters with different characteristics. These clusters 

can help to inform targeted interventions to promote resilience to different rainfall patterns in different regions 

of the country [11,12]. 
 

The table of water storage capacity by dam highlights the importance of dams as a source of water for various 

uses in Kenya, including irrigation, hydroelectric power generation, and domestic and industrial water supply. 

The results suggest that there is considerable variation in the storage capacity of dams in Kenya, with some 

dams having much higher storage capacity than others. Understanding the distribution of water storage capacity 

can inform water resource management and planning efforts, as well as the design of targeted interventions to 

improve water storage capacity in Kenya. 
 

The table of regional water stress levels by cluster shows that different regions of Kenya experience different 

levels of water stress depending on the cluster they belong to. Understanding the distribution of water stress 

across regions can inform the design of targeted interventions to promote sustainable water use practices and 

improve water access in regions with high levels of water stress [13,14]. 
 

The table of crop yield by region highlights the considerable regional variation in crop yields in Kenya. The 

results suggest that some regions have higher yields than others, which can help to inform agricultural planning 

and policy efforts to promote sustainable crop production and improve food security in the country. 
 

Overall, the findings of this study can inform a range of policy and planning efforts in Kenya, including water 

resource management, agricultural planning, and land use planning. The use of Bayesian non-parametric 

modeling in this study can also be applied to other areas of research, allowing for the identification of distinct 

patterns and clusters in various types of data. 
 

5 Conclusion 
 

In conclusion, this study used a Bayesian non-parametric approach to model the rainfall patterns in Kenya, and 

identified distinct clusters with different characteristics. The results suggest that there is considerable regional 

variation in the distribution of rainfall clusters in Kenya, with some regions being more vulnerable to certain 

types of rainfall patterns than others. The findings of this study can inform targeted interventions to promote 

resilience to different rainfall patterns in different regions of the country, such as the development of drought-

resistant crop varieties, the promotion of sustainable water use practices, and the improvement of water storage 

capacity in regions with high levels of water stress. 
 

The study also identified considerable variation in the storage capacity of dams in Kenya, with some dams 

having much higher storage capacity than others. Understanding the distribution of water storage capacity can 

inform water resource management and planning efforts, as well as the design of targeted interventions to 

improve water storage capacity in Kenya. 
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The findings of this study also highlight the considerable regional variation in crop yields in Kenya, with some 

regions having higher yields than others. Understanding the patterns of crop yields can inform agricultural 

planning and policy efforts to promote sustainable crop production and improve food security in the country. 

 

In summary, the results of this study have important implications for policy and planning efforts in Kenya, 

including water resource management, agricultural planning, and land use planning. The use of Bayesian non-

parametric modeling in this study can also be applied to other areas of research, allowing for the identification 

of distinct patterns and clusters in various types of data. 

 

However, it is important to note that this study is not without limitations. One limitation is the use of data from a 

relatively short time period, which may not fully capture the long-term patterns and trends in rainfall in Kenya. 

Another limitation is the lack of data on certain variables that could impact water resource management and 

agricultural production, such as soil quality and land tenure systems. Future research could address these 

limitations by using longer-term data and incorporating additional variables into the modeling approach. 

 

In conclusion, the findings of this study provide valuable insights into the distribution of rainfall clusters, water 

storage capacity, and crop yields in Kenya. These insights can inform policy and planning efforts to promote 

sustainable water resource management, agricultural production, and land use practices in the country. 
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