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Abstract

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of

multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the

paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dis-

located into the paranode. These pathological features are reproduced in a model of chronic

meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α
(LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and

glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be

reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were

inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity

was observed, reaching conduction failure in small diameter axons. We suggest that glial cells

activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers

paranodal pathology, contributing to axonal damage and conduction deficits.

Introduction

Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system (CNS) char-

acterised by focal and diffuse areas of inflammation, axonal degeneration and loss, demyelination,

and gliosis [1]. Although the focus of MS research has for a long time been on the demyelinating

lesions, neuronal damage and axonal loss are now recognised as early and persistent factors in

MS pathology [2,3] and may be the best predictors of long-term neurological decline [4]. It has

been suggested that activated microglia and macrophages surrounding myelinated stressed axons

[3] could initiate swelling around the nodes of Ranvier, leading to mitochondrial pathology and
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subsequent focal axonal degeneration [5]. The lesion-free normal-appearing white matter

(NAWM) in progressive MS is actually highly abnormal and contains chronically activated

microglia, dysfunctional and degenerating axons, reactive astroglia, and a compromised blood–

brain barrier (BBB) [6–9]. Additionally, MRI studies have shown abnormalities in NAWM

regions, especially in chronic progressive patients with long disease duration [10,11].

Axonal dysfunction in the NAWM could be promoted by structural alterations at the nodes

since they are critical elements in maintaining fast and efficient saltatory action potential (AP)

conduction. The interaction between the Caspr1, contactin, and neurofascin 155 (Nf155)

proteins and the cytoskeletal proteins, ankyrinB, and αII and βII spectrins, contributes to

the formation of the paranodal junctions (PNJ) [12–15]. The intricate and tight molecular

interactions between the oligodendrocyte and the axon at these myelin free points are vital for

restricting movement of membrane proteins between the various nodal zones and reducing

the flow of current under the myelin sheath, but also make the PNJ particularly vulnerable to

immune-mediated pathological alterations. Postmortem tissue studies of MS NAWM have

shown an increase in the length of Nf155-stained paranodal structures, and a partial disloca-

tion of juxtaparanodal Kv1 channels towards the node in a proportion of axo-glial junctions

[16]. However, the functional significance and mechanisms underlying the paranodal/nodal

disorganisation in MS NAWM are unclear. Live laser-scanning coherent anti-Stokes Raman

scattering (CARS) imaging of spinal cord myelin of rodent axon tracts exposed to elevated glu-

tamate levels, pathological Ca2+ influx, and calpain1 activation, has demonstrated paranodal

splitting [17–19]. Animal studies performed with conditional knockouts of the paranodal pro-

teins Caspr1 [20], Nf155 [21], βII spectrin [22], and 4.1.B protein [23,24] showed a lack of tight

septate junctions, an increased peri-axonal space, dislocation of the juxtaparanodal voltage-

gated channels Kv1 towards the PNJ, and functional alterations such as motor tremors and

reduced conduction velocities. Taken together, this suggests a possible model of molecular

paranodal disorganisation due to Ca2+ accumulation mediated by glutamate activation of the

N-methyl-D-aspartate (NMDA) receptors located in the cytoplasmic processes of the oligo-

dendrocyte at the PNJ [25–28]. Multiple magnetic resonance spectroscopy (MRS) studies have

demonstrated elevated glutamate levels in both acute MS lesions and NAWM tissue [29–31].

Pro-inflammatory cytokines, such as TNF, can stimulate microglia in an autocrine/paracrine

manner to induce glutamate release [32,33], as well as blocking astrocytic glutamate transport-

ers crucial for glutamate homeostasis [34–36]. Recent data from human tissue studies have

shown the presence of increased levels of TNF signaling in the MS brain [37].

Here, we report that disruptions of the Caspr1 expressing PNJ structures and Kv1 displace-

ment are present in the NAWM of MS brains at regions remote from lesions and are accompa-

nied by axonal changes, which could be reproduced in a rat model of chronic meningeal

inflammation that leads to chronic microglial activation throughout the brain. Paranodal disrup-

tion correlated with the presence of activated microglia, suggesting a mechanism of axonal injury

that starts at the paranode independently of the demyelination process. Furthermore, we demon-

strate that similar PNJ pathology could be induced in ex vivo cerebellar slice cultures by the acti-

vation of microglia with IFNγ and TNF or LTα and resultant glutamate release. Finally, we used

biophysical simulations to systematically explore the effects on conduction of a range of parano-

dal and juxtaparanodal structural alterations observed in the human tissue and animal model.

Results

The PNJ structure is disrupted in postmortem MS NAWM

In order to characterise PNJ pathology present in human MS NAWM tissue and its relation-

ship to local microglial activation and axonal cytoskeleton disruption, NAWM regions of
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interest at least 4 to 5 mm away from a demyelinating lesion were carefully selected from snap-

frozen tissue blocks incorporating the cerebral peduncle and the precentral gyrus, both of

which have a high density of longitudinal axons. Immunofluorescence with antibodies to the

myelin protein, myelin oligodendrocyte glycoprotein (MOG), confirmed the myelin integrity

(Fig 1A), and HLA-DR (MHC class II) antibodies confirmed the presence of microglia with an

activated morphology (thicker and shorter processes) (Fig 1B). Immunofluorescence for

Caspr1 localised at the paranodes demonstrated that Caspr1-stained paranodes (2.8 ± 1.1 μm)

were significantly 21.7% longer on average in the MS NAWM tissue than in the non-neurolog-

ical control tissue (2.3 ± 0.8μm, Fig 1C–1G). Furthermore, 43% of the paranodes in the MS tis-

sue were longer than the 75% percentile of the control group (2.7 μm), and 11.14% were

longer than 4 μm, compared to the 4.1% in the non-neurological controls (Fig 1G). There was

little difference between the 2 brain areas examined; the paranodal lengths in the cerebral

peduncles of the mesencephalon were 2.81 ± 0.019 μm long, and 12% of them were>4 μm,

compared to those in the precentral gyrus, which were 2.79 ± 0.017 μm long, and 10% of them

were>4 μm (S1 Fig). This suggests that the length of the paranodes, defined by Caspr1 label-

ling, was disrupted in a significant proportion of axons in MS brains compared to non-neuro-

logical controls.

PNJ disruption is associated with microglial activation and axon stress

Chronic activation of microglia and axonal degeneration are two of the main pathological fea-

tures of NAWM tissue in progressive MS. Therefore, we examined their relationship to para-

nodal length as a marker of paranodal axo-glial disruption. The mean area occupied by

HLA-DR+-labelled microglia was obtained as a measurement of microglial activation. Moder-

ate significant correlations were found between mean paranodal length and the proportion of

paranodes >4 μm and the mean microglial area (r = 0.46 and r = 0.43, �p< 0.05, Fig 1H and

1I). Double immunofluorescence labelling with the SMI32 antibody, which labels dephosphor-

ylated neurofilament proteins, an indicator of axon stress, and Caspr1 to indicate paranodal

length (Fig 2A), demonstrated that SMI32+ axons had longer Caspr1-stained paranodes on

average (mean = 3.89 ± 0.1 μm) than SMI32− (mean = 2.49 ± 0.07 μm, Fig 2B) and non-neuro-

logical controls (mean = 2.33 ± 0.01 μm). Furthermore, the average paranodal length for

SMI32+ axons was 66.9% longer than the control paranodal length and 56.2% longer than

SMI32− axon paranodal length (Fig 2B), indicating a strong relationship between the altered

paranodes and axonal stress.

Paranodal disruption is associated with juxtaparanodal Kv1.2 channel

dislocation

One of the roles of the tightly adherent axo-glial junctions is to promote the clustering and seg-

regation of voltage-gated channels and prevent electrical current shunting underneath the

myelin sheath. To examine if paranodal structural instability could provoke a dislocation of

juxtaparanodal voltage-gated Kv1.2 channels to the paranode in MS NAWM tissue, RGB

intensity profiles of the Caspr1 (red) and voltage-gated Kv1.2 channel (green) labelled para-

nodes and juxtaparanodes were measured (Fig 2C and 2D). The colocalisation of Caspr1 and

Kv1.2 was calculated by subtracting both intensity signals one from each other. When this dif-

ference was smaller than a variable threshold, we took that point as an overlapping region

(source code in S1 Text). For a variable intensity threshold, MS NAWM tissue had a higher

proportion of overlapping regions at every threshold than the non-neurological control tissue

(Fig 2E). For example, if the threshold was set to 50, the MS NAWM tissue had 19.7% more

overlapping regions than non-neurological control tissue, while at a threshold of a 100, the MS
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NAWM tissue had 41% more overlapping regions than control. Thus, paranodal disruption

was accompanied by a dislocation of the juxtaparanodal Kv1.2 channels towards the node,

making these voltage-gated channels more exposed to the more extensive nodal extracellular

space, which is more capacitive and less resistive than the compacted myelin of the juxtapara-

nodes. Additionally, significant correlations were present between the proportion of overlap-

ping regions in NAWM tissue when the threshold was set to 50 and the mean paranodal

length (Fig 2F) and proportion of paranodes longer than 4 μm (Fig 2G). The same quantifica-

tion procedure was followed for assessing dislocation of the nodal Nav voltage-gated channels

into the PNJ, but no significant dislocation was identified, even in the presence of elongated

paranodes (S2 Fig). Overlap between Nav voltage-gated channels and components of the para-

nodal junctions was not observed.

Prolonged exposure of the rat cortex to pro-inflammatory cytokines can

generate paranodal disruption

To further study the relationship between chronic inflammation in the NAWM and PNJ

pathology, we used a novel rat model of chronic meningeal inflammation [38]. In this model,

inflammation was initiated by chronic production of the pro-inflammatory cytokines LTα and

IFNγ within the meninges and cerebrospinal fluid (CSF). Meningeal inflammation induced

widespread microglial activation over 3 months in the absence of WM demyelination, which

did not occur in these animals (S3 Fig). This allowed the study of the effects of diffuse neuroin-

flammation on the axons of the NAWM, similar to those seen in progressive MS, avoiding

Wallerian degeneration and dying back axonal injury patterns resulting from demyelination.

Control groups were rats injected with a green fluorescent protein (GFP) gene vector or naive

rats (S3 Fig). NAWM regions were selected from the MOG immunofluorescence images of the

corpus callosum, cingulate, and external capsule (Fig 3A–3C).

Immunofluorescence analysis of Caspr1 and voltage-gated Kv1.2 channel localisation was

carried out as for the human tissue (Fig 3D–3G). In total, 1,000 Caspr1-stained paranodes (200

paranodes per rat) from the LTα/IFNγ group, 600 from the GFP group, and 600 from the

naïve group were analysed. The mean Caspr1-stained paranodal length in the LTα/IFNγ vec-

tor group (2.41 ± 0.01 μm) was 35.6% longer than values for naive rats (1.77 ± 0.01 μm) and

15.9% longer than the GFP-vector-injected rats (2.08 ± 0.02 μm). Furthermore, 82% of the

paranodes in the LTα/IFNγ group were longer than the 75% percentile of the naïve group

(1.98 μm) (Fig 3H). Paranodal length distributions of each group showed that 9.7% of the para-

nodes in the LTα/IFNγ group were longer than 3 μm compared to the 4.8% in the GFP group

and 0% in the naïve group (Fig 3I (purple and pink)). Compared to the naïve group, in which

77.5% of the paranodes were shorter than 1 μm, in the GFP group 46.7% and in the LTα/IFNγ
group 19.3% were shorter that 1 μm in length (Fig 3I). Thus, paranodal axo-glial junctions in

Fig 1. MS NAWM regions contained a larger proportion of elongated paranodes associated with activated microglia. (A) Anti-MOG-myelin

immunofluorescence was used to identify areas of demyelination and normal appearing myelin. NAWM regions of interest (i, ii) were selected as

areas distant from demyelinating lesions (iii, iv). (B) Clusters of process bearing anti-HLA-DR+ microglia with an activated morphology were

found throughout the NAWM regions of interest and are illustrated at higher magnification in panels i–iv. (C) Confocal image of single

Caspr1-stained paranode in cross-section and its intensity profile. (D, E) Confocal images of paranodes from human postmortem non-

neurological control (D) and NAWM MS tissue (E). (F) Significantly different distributions of Caspr1+ paranodal lengths occurred in NAWM MS

tissue in comparison to non-neurological control tissue (p< 0.0001, Mann–Whitney test). (G) NAWM MS tissue contained a larger proportion of

Caspr1+ paranodes longer than 4 μm and 5 μm than the control tissue. (H) The mean paranodal length per block correlated with the mean area

occupied by HLA-DR+ microglia/ macrophages (r = 0.43, �p< 0.5, Spearman rank correlation test). (I) The mean area occupied by HLA-DR

+ microglia/macrophages per block correlated with the proportion of paranodes longer than 4 μm (r = 0.46, ��p< 0.01, Spearman rank

correlation test). MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; NAWM, normal-appearing white matter. Data and code to

reproduce this figure can be found at: https://github.com/PatGal2020/PLOS_submission

https://doi.org/10.1371/journal.pbio.3001008.g001
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the LTα/IFNγ vector-injected animals, in which there was widespread microglial activation,

were highly disrupted compared to the GFP and naïve groups. Interestingly, the GFP vector

injected animals also had a modest but significant increase in paranodal length, along with a

low level of microglial activation, but at a level that was significantly less than the cytokine vec-

tor-injected animals.

Analysis of the RGB intensity profiles of Caspr1 and Kv1.2 channels, following the same

method as in the postmortem human tissue (source code in S1 Text), showed that the brains of

LTα/IFNγ vector-injected animals contained a larger proportion of axons with overlapping

regions (Fig 3J and 3K) at every threshold analysed. Therefore, the LTα/IFNγ animals had

more damaged axons with dislocated voltage-gated Kv1.2 channels, indicating more disrupted

PNJs than the GFP and naïve groups (Fig 3J and 3K). When the intensity threshold was set to

50, the proportion of overlapping regions were significantly different between LTα/IFNγ and

GFP or naïve groups. Moreover, the proportion of overlap correlated with the average parano-

dal length (Fig 3L, r = 0.827) and with the proportion of paranodes >3 μm per rat (r = 0.765).

These results suggest that paranodal lengthening and Kv1.2 dislocation were often observed

together. Although there was clearly an increase in the number of axons expressing SMI-32

immunoreactivity in animals injected with LTα/IFNγ vector (S3D Fig), similar to the MS

NAWM, it proved impossible to quantify the relationship between these SMI32+ axons and

Caspr1+ paranodal length due to the compact axon density in the corpus callosum, cingulate,

and external capsule in the rat.

To investigate whether surrounding inflammation could have a role in this pathology, the

number of microglia and astroglia in the NAWN regions were assessed on serial sections from

the same animals (Fig 4A–4F). The number of microglia in the NAWM correlated significantly

with the average paranodal length (Fig 4G, r = 0.62) and with the proportion of overlapping

regions between Caspr1 and Kv1.2 (Fig 4H, r = 0.778). Although there was no significant dif-

ference in total microglial numbers between the groups, microglia in the LTα/IFNγ vector-

injected animals had an activated morphology compared to the GFP vector-injected and naive

animals (insets in Fig 4A–4C). Furthermore, the number of astroglia also correlated with the

average paranodal length (Fig 4I, r = 0.69) and with the proportion of overlapping regions

between Caspr1 and Kv1.2 (Fig 4J, r = 0.75). These data support our hypothesis that points to

microglia and astroglia as major mediators of the paranodal axo-glial junction disruption in

myelinated axons.

TNF/IFNγ-activated microglia and astroglia release high levels of

glutamate

Previous studies have suggested that elevated glutamate levels are able to induce nodal changes

[17–19]. Therefore, in order to assess if increased levels of pro-inflammatory cytokines in the

Fig 2. Paranodal elongation was associated with SMI32+ axons and the dislocation of juxtaparanodal voltage-gated Kv1.2 channels. (A)

Confocal images of long Caspr1+ paranodes co-stained with SMI32 antibody. SMI32+ axons characterised by dephosphorylated neurofilaments

had elongated paranodes. (B) Paranodal length distributions of SMI32+ and SMI32− axons from MS NAWM and non-neurological control tissue

(���� p< 0.0001, Mann–Whitney test). (C) Confocal image from a node showing the expression of Caspr1 in the paranode (red) and Kv1.2

channels in the juxtaparanodes (green) do not overlap under non-pathological conditions and the respective RGB profile. (D) Confocal images

from nodes where Caspr1 and Kv1.2 are colocalising, and therefore possibly being affected by MS neuropathological conditions and their intensity

RGB profiles. The purple circles denote regions where both signals are colocalising: overlapping regions. (E) When the difference between Caspr1

and Kv1.2 signals was smaller than a variable intensity threshold, we considered that point as an overlapping region. For every threshold calculated,

the proportion of overlapping regions was larger in MS NAWM tissue (blue) than in non-neurological control tissue (grey). (F) The mean

paranodal length per block correlated with the proportion of overlapping regions at an intensity threshold of 50 (r = 0.49, ��p< 0.01, Spearman

rank correlation test). (G) The proportion of paranodes longer than 4 μm per block correlated with the proportion of overlapping regions at a

threshold of 50 (r = 0.57, ���p< 0.001, Spearman rank correlation test). MS, multiple sclerosis; NAWM, normal-appearing white matter. Data and

code to reproduce this figure can be found at: https://github.com/PatGal2020/PLOS_submission.

https://doi.org/10.1371/journal.pbio.3001008.g002
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CNS can stimulate glutamate release from microglia and/or astroglia, primary rat microglial

and astroglial cultures were treated with different concentrations of TNF, IFNγ, or TNF

+ IFNγ (S4A Fig). Microglia were activated by TNF and/or IFNγ as indicated by transforma-

tion of their morphology from a ramified shape to a more activated amoeboid morphology

(Fig 5A–5D). A single treatment with 100 ng/ml of TNF, IFNγ, or TNF+IFNγ, induced a sig-

nificant increase in glutamate release after 24 h (TNF: 88.68 ± 26.67 μM, IFNγ:

81.62 ± 10.4 μM, TNF + IFNγ: 83.69 ± 2.88 μM) and 48 h (TNF: 79.39 ± 7.64 μM, IFNγ:

52.95 ± 4.14 μM, TNF + IFNγ: 76.02 ± 8.42 μM) compared to controls (24 h: 33.49 ± 2.11 μM;

48 h: 27.73 ± 7.33 μM) (Fig 5E), which did not increase further if the dose was increased to 200

ng/ml (S4B Fig). The difference in glutamate levels between 24 h and 48 h across treatments

was not significant (Fig 5E). However, administration of 2 doses of 100 ng/ml of TNF + IFNγ
24 h apart (Fig 5F) resulted in the highest concentration of glutamate in the medium at 48 h

(96.05 ± 9.92 μM) when compared to the single treatments. We have used TNF and LTα inter-

changeably here as they both act via the TNFR1 receptor in this context. The same experiments

on the primary microglial cultures were also carried out with the pro-inflammatory cytokines

LTα and IFNγ, which also resulted in a significant glutamate release compared to controls

after 2 doses administered 24 h apart (S4C and S4D Fig). In a similar way, TNF + IFNγ also

stimulated significant glutamate release from astroglia 24 h after addition at both 100 ng/ml

and 200 ng/ml (S5A Fig), although there was no significant difference between 100 and 200

ng/ml. In addition, glutamate uptake by astroglia was substantially inhibited by the addition of

the cytokines (S5B Fig).

TNF/IFNγ and direct glutamate administration induce paranodal

elongation in ex vivo cerebellar slices

In order to determine if TNF + IFNγ and glutamate could cause MS-like paranodal pathology,

organotypic cerebellar slices derived from P8/9 rats and cultured for 8 to 10 days were treated

with 3 doses of 50 ng/ml TNF/IFNγ, 2 doses of 100 ng/ml of TNF/IFNγ, 2 doses of microglial-

conditioned medium, 2 doses of glutamate at 75 μM, or 2 doses of glutamate at 100 μM (in all

the treatments, doses were administered every 24 h, and glutamate levels were measured 24 h

after the last dose (S6 Fig). For each of the cerebellar tissue slices, 200 focused Caspr1-stained

paranodes were analysed (Fig 6A). In cerebellar slices treated with TNF/IFNγ, Caspr1-stained

paranodal length was 19.15% longer on average in the 50 ng/ml group (2.96 ± 0.03 μm) and

16.6% on average in the 100 ng/ml group (2.88 ± 0.04 μm) than in the nontreated cerebellar

cultures (2.47 ± 0.03 μm, Fig 6B). However, when separating the paranodal measurements by

length ranges, they had larger proportions of highly disrupted long paranodes >4 μm than the

untreated cerebellar slices (11.38% in the 100 ng/ml group and 11.34% in the 50 ng/ml group;

Fig 3. LTα/IFNγ-affected rat tissue contained a higher proportion of elongated Caspr1-paranodes compared to the GFP and

naive. (A–C) Immunofluorescent images of MOG-stained corpus callosum, cingulate, and external capsule of the LTα/IFNγ, GFP,

and naive rats. (D) Confocal image of Caspr1-Kv1.2-stained paranodes and juxtaparanodes from a LTα/IFNγ rat. (E–G) Confocal

images of single Caspr1-Kv1.2-stained paranodes and juxtaparanodes from a LTα/IFNγ rat. (H) Caspr1-measured paranodal length

distributions of LTα/IFNγ (blue), GFP (orange), and naive (grey) rat groups (���� p< 0.0001, Mann–Whitney test). (I) Paranodal

length data were divided into different length ranges and represented in a bar plot. LTα/IFNγ vector-injected brains contained a

larger proportion of paranodes longer than 3 and 4 μm. (J) Confocal images in which Caspr1-stained paranodes colocalised with

Kv1.2-stained juxtaparanodes. In order to quantify the displacement of the channels, the RGB intensity profiles of each paranode and

juxtaparanode were acquired. The purple circles denote regions where both signals were colocalising. (K) Graph showing that the

proportion of overlapping regions between Caspr1 and Kv1.2 RGB signals was larger at every intensity threshold in the LTα/IFNγ
group compared to the GFP and naive groups. (L) Mean paranodal length correlated significantly with the proportion of overlapping

regions when the intensity threshold was set to 50 (r = 0.827, ��p< 0.01, Spearman rank correlation test). GFP, green fluorescent

protein; IFNγ, interferon-γ; LTα, lymphotoxin-α; MOG, myelin oligodendrocyte glycoprotein. Data and code to reproduce this

figure can be found at: https://github.com/PatGal2020/PLOS_submission.

https://doi.org/10.1371/journal.pbio.3001008.g003
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Fig 4. Paranodal lengthening and Kv1.2 dislocation occurs simultaneously, and they are linked to glial activation. (A–C) Immunofluorescent images of IBA1

+ microglia (red) from the corpus callosum of LTα-IFNγ, GFP, and naive rats. Insets show that microglia (shown in green) display a highly activated morphology in the

cytokine vector-injected animals compared to the GFP control and naive animals. (D–F) Immunofluorescent images of GFAP+ astroglia from the corpus callosum of

the LTα/IFNγ, GFP, and naive rats. (G) The number of microglia correlated with the mean paranodal length per rat (r = 0.62, �p< 0.05, Spearman rank correlation

test). (H) The number of microglia correlated with the proportion of overlapping regions between Caspr1 and Kv1.2 when the intensity threshold was set to 50

(r = 0.778, ��p< 0.01, Spearman rank correlation test). (I) The number of astroglia correlated with the mean paranodal length per rat (r = 0.69, �p< 0.05, Spearman
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Fig 6C, light and dark purple). Abnormally long Caspr1-stained paranodes were also observed

(asterisks in Fig 6A).

Five cerebellar slices were treated with the primary microglial-conditioned medium pro-

duced after 2 doses of 100 ng/ml of TNF/IFNγ, the condition that resulted in the greatest gluta-

mate release. These cerebellar cultures had an average paranodal length of 3.23 ± 0.04 μm,

32.84% longer on average than the nontreated ones (2.47 ± 0.027 μm; 200 paranodes were ana-

lysed per cerebellar slice, Fig 6A–6C). In order to examine if glutamate was one of the main

cytotoxic factors in the microglial cytokine-conditioned medium, 4 cerebellar slices were

treated with 75 μM of glutamate for 48 h (the average glutamate concentration in the 100 ng/

ml TNF/IFNγ group was 96.046 ± 9.92 μM and the conditioned medium was diluted 4:1),

which resulted in paranodes 26.11% longer on average than the nontreated tissue slices (Fig

rank correlation test). (J) The number of astroglia correlated with the proportion of overlapping regions between Caspr1 and Kv1.2 when the intensity threshold was set

to 50 (r = 0.75, �p< 0.05, Spearman rank correlation test). GFP, green fluorescent protein; IFNγ, interferon-γ; LTα, lymphotoxin-α. Data and code to reproduce this

figure can be found at: https://github.com/PatGal2020/PLOS_submission.

https://doi.org/10.1371/journal.pbio.3001008.g004

Fig 5. TNF/IFNγ-activated microglia release high amounts of glutamate. (A) Live image of nontreated primary microglial cultures, (B) cultures treated with

IFNγ after 48 h, (C) cultures treated with TNF after 48 h, and (D) cultures treated with TNF/IFNγ after 48 h. (E, F) Mean ± SEM for glutamate levels from

replicates showing the statistical difference between controls and the cytokine treatments: (E) 100 ng/ml (n = 3 Control, n = 3 TNF, n = 3 IFNγ, n = 3 TNF/

IFNγ), (F) 2 acute treatments of 100 ng/ml (n = 3 Control, n = 3 TNF, n = 3 IFNγ, n = 4 TNF/IFNγ). Nonparametric Friedman test was performed across

cytokine groups and timings and post hoc paired-wised Wilcoxon tests to compare groups (� p< 0.05, �� p< 0.01). IFNγ, interferon-γ; TNF, tumour necrosis

factor. Data and code to reproduce this figure can be found at: https://github.com/PatGal2020/PLOS_submission.

https://doi.org/10.1371/journal.pbio.3001008.g005
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6A–6C). In order to confirm if the effect of TNF/IFNγ was due to glutamate release and action,

5 slices were treated with 2 doses of 100 ng/ml of TNF/IFNγ together with the noncompetitive

NMDA antagonist MK-801 (0.6mM) (Fig 6D). The paranodal length distribution of the slices

was not significantly different between the MK-801-treated and nontreated slices (Fig 6E). The

proportion of paranodes longer than 4 μm was greatly reduced in the MK-801 group com-

pared to the cultures treated with the cytokines alone (from 11.38% of the paranodes to 3.3%,

Fig 6E).

PNJ disruption can affect velocity and conduction in small-diameter axons

To systematically examine the consequences of paranodal disruption on AP propagation

through the use of computational modelling, a double cable core model was built and solved

numerically in NEURON (Fig 7A). A double cable core-conductor circuitry was chosen to rep-

resent the biophysical parameters of the axonal membrane, the peri-axonal space, and the

myelin sheath separately [39–41]. We simulated the functionality of an axon membrane made

up of 4 types of compartments: nodes, paranodes, juxtaparanodes, and internodes. The nodes

clustered a high density of fast Nav channels (Nav1.6), persistent Nav channels, and slow Kv

channels (Fig 7A, purple). Immediately flanking the nodes, the paranodes were built as com-

partments with no active conductances, and the sites where the myelin end loops connect with

the axolemma (Fig 7A, dark grey). Next to the paranodes, the juxtaparanodes contained fast

Kv channels (Fig 7A, medium grey). Finally, the internodes were sections surrounded by mye-

lin with a low density of ion channels (Fig 7A, light grey). Seven fibre diameters were simu-

lated: d fibre = 0.5, 0.8, 1.1, 1.3, 1.6, 1.8, 3.5 [μm]. These small-caliber diameters were chosen

taking into consideration previous human brain and macaque electron microscopy (EM) stud-

ies, which indicated that the average axon core diameter within the CNS is 1 μm [42]. All the

structural and biophysical parameters used in the simulations were taken from previous EM

studies and are summarised in Fig 7B and 7C, whereas the conductances and gating dynamics

of the channels were based on previous electrophysiological studies, detailed in the Materials

and methods. The conduction velocity predicted by our simulations showed a linear relation-

ship with the fibre diameter (V[m/s] = 4.52 � dfibre [μm]) (Fig 7D, blue line), which reproduced

previous experimental results (Fig 7D, dotted grey line, velocity data derived by Boyd and Kalu

[43] from small diameter axons in the cat hind limb nerves V = 4.6 � dfibre).

In order to simulate paranodal disruption, the resistance of the paranodal and/or juxtapara-

nodal compartments was decreased, and the juxtaparanodal Kv channels were dislocated. The

resistance was decreased by increasing the peri-axonal space of both compartments progres-

sively. The observed paranodal lengthening was represented in this model by an increment in

peri-axonal space on the assumption that if some myelin-end loops at the PNJ detached from

the axolemma, these spaces will be progressively larger [20,21]. Furthermore, juxtaparanodal

Kv channels were dislocated to the paranode, and their conductance was increased proportion-

ally to the increment in peri-axonal space of the paranode. In summary, the following

Fig 6. The proportion of elongated paranodes in cerebellar tissue slices treated with pro-inflammatory cytokines and glutamate. (A)

Confocal images of Caspr1-stained paranodes from nontreated cerebellar cultures, slices treated with 3 doses of 50 ng/ml TNF/IFNγ, slices

treated with 2 doses of 100 ng/ml TNF/IFNγ, slices treated with 2 doses of 75 μM glutamate, and slices treated with 2 doses of microglial-

conditioned medium (medium from primary microglia treated with 2 doses of 100 ng/ml TNF/IFNγ); asterisks point to long and disrupted

paranodes. (B) Box-plots showing the different paranodal length distributions between the treated and nontreated cultures (nonparametric

Kruskal–Wallis test and post hoc Wilcoxon rank sum test, ����p< 0.0001). (C) Bar plots of the same paranodal length distributions showing the

proportion of paranodes in each data set of different lengths. (D) Box-plot of the paranodal length distributions of the nontreated cultures

(orange), 2 doses of 100 ng/ml TNF + IFNγwith MK-801 (dark grey), and 2 doses of 100 ng/ml TNF + IFNγ alone (light grey) (���� p< 0.0001,

Mann–Whitney test). (E) Bar plot showing the same paranodal length distributions divided into different length ranges. IFNγ, interferon-γ;

TNF, tumour necrosis factor. Data and code to reproduce this figure can be found at: https://github.com/PatGal2020/PLOS_submission.

https://doi.org/10.1371/journal.pbio.3001008.g006
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structural arrangements were simulated: (a) proportional increment of the paranodal peri-axo-

nal space (Fig 8A); (b) proportional increment of the paranodal and juxtaparanodal peri-axo-

nal space (Fig 8B); (c) proportional increment of the juxtaparanodal fast Kv channels

conductance and the paranodal peri-axonal space (Fig 8C); and the proportional increment of

the juxtaparanodal fast Kv channels conductance, and the paranodal and juxtaparanodal peri-

axonal spaces (Fig 8D).

The conduction velocity decreased as the paranodal peri-axonal space increased for all the

axon diameters (Fig 8A). Fitting the data to a logarithmic curve, the velocity of the axons

decreased faster in the smaller-diameter axons than the larger-diameter ones as the paranodal

peri-axonal space was increased (Fig 8A). When the juxtaparanodal fast Kv channels were dis-

located to the paranodal compartment (Fig 8B), the velocity also decreased faster in the small-

diameter axons, although the dislocation of the channels did not significantly alter this. When

a progressive increment of the paranodal and juxtaparanodal peri-axonal spaces was intro-

duced (Fig 8C), the axon with a core diameter of 0.4 μm failed to conduct when the paranodal

and juxtaparanodal peri-axonal spaces were increased by 500% (the paranodal peri-axonal

space was 0.012 μm and the juxtaparanodal 0.12 μm). Meanwhile, the axons with dcore of

0.6 μm and 0.8 μm also failed to conduct when the paranodal and juxtaparanodal peri-axonal

spaces were increased by 1,000% (the paranodal peri-axonal space was 0.022 μm and the juxta-

paranodal 0.22 μm). Additionally, larger-diameter axons had a significant velocity decay in the

same conditions. For example, the velocity of the axon with a core diameter of 2.7 μm

decreased 78.47% (y = −0.209 � ln(x) + 1.6457, r2 = 0.99). In the last structural arrangement,

the paranode and juxtaparanode peri-axonal spaces were increased and the Kv1 were dislo-

cated (Fig 8D). In this condition, conduction failure occurred in the axons with a core diame-

ter of 0.4, 0.6, and 0.8 μm and a decrease in axons with a core diameter of 2.7 μm. These data

suggest that AP conduction in the smaller-diameter axons might be more susceptible to para-

nodal and juxtaparanodal disruption than larger-diameter axons.

In the previous 4 conditions, all 21 nodes of the axon were disrupted by increasing the peri-

axonal space widths and displacing the juxtaparanodal voltage-gated Kv channels. However,

conduction failure only occurred in the small-diameter axons (dcore of 0.4, 0.6, and 0.8 μm).

Therefore, we also examined the number of consecutive nodes needed for conduction failure

at these diameters, and the velocity decay after simulating conduction in an axon where

patches of healthy nodes (Fig 8E, purple) were interspersed with patches of disrupted nodes

(Fig 8E, orange), which is more likely to reflect the pathological situation. In the axon with

dcore = 0.4 μm, 5 consecutive nodes were needed for conduction failure when the width of the

paranodal and juxtaparanodal peri-axonal spaces were increased to 0.012 and 0.12 μm, respec-

tively (Fig 8E). We then explored if damaging less than 5 nodes consecutively in different pat-

terns would also cause conduction failure or a decrease in conduction velocity (Fig 8E). By

simulating different patterns, we could observe that the total number of disrupted nodes along

an axon did not determine if the conduction was going to fail, but it depended on the number

of consecutive nodes disrupted. For example, when 3 disrupted nodes (Fig 8E, orange) were

Fig 7. Structural and biophysical parameters used to simulate a 21 node myelinated axon. (A) A double cable circuit of the model to represent the axolemma (Ga),

the peri-axonal space (Gp), and the myelin sheath (Gm) was generated with the simulator NEURON. Specifically, 21 nodal, 39 paranodal, 39 juxtaparanodal, and 20

internodal compartments were created. (B) Anatomical parameters used in the model. Seven diameters were chosen from CNS measurements from macaque EM

studies [42], the number of myelin lamella (nl) was calculated from the myelin periodicity value of 0.0156 μm [71], the node-to-node length was taken from the linear

relationship measured from rat nerve fibres [72], the juxtaparanodal length was extrapolated from the diameter-dependent scaling relationship from the ventral root of

cats [73], and the paranodal length was determined from the average value of Caspr1 staining measured from our non-neurological control cases. (C) Biophysical

parameters. Axon capacitance was based on data from rat ventral roots [86], myelin capacitance and leak conductance per lamella were based on the frog sciatic nerves

[87]. The resistivity was set to 1,000 Ohm � cm2 for each myelin lamella [40,87,88,89,90,91]. (D) Plot showing the conduction velocity of the model across the 7 fibre

diameters simulated (blue) and the velocity data measured in cat hind limb nerves [43].

https://doi.org/10.1371/journal.pbio.3001008.g007
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followed by 2 healthy nodes (Fig 8E, purple), the conduction did not fail, instead it caused a

velocity decay of 73.1%. Meanwhile, in other conditions with less numbers of disrupted nodes,

the conduction failed when 4 consecutive nodes were disrupted (Fig 8E). Simulations using

different patterns for axons with dcore = 0.6 and 0.8 μm can be found in S7 and S8 Figs.

Discussion

The nodes of Ranvier represent the only points of direct contact between myelin and the axon,

specifically at the paranodal axo-glial junctions [14,44], and it is suggested that these sites

could be one of the targets of the immune mediated attacks in MS. Paranodal and juxtaparano-

dal pathology has been described in only a few studies in human MS tissue [16,45–47], but its

effects and causes remain unknown. Our detailed analysis of the longitudinal elongation of the

Caspr1-stained paranodal axo-glial junctions and dislocation of the Kv1.2 channels indicate a

clear disruption in a proportion of paranodes in MS NAWM compared to non-neurological

control tissue. This extends and supports our previous study that showed an elongation of the

glial neurofascin 155 expressing paranodal structures [16]. Here we report significant alter-

ations in caspr1+ paranode length, juxtaparanodal disruption, and the association with axon

stress/damage, across a broad spectrum of NAWM samples, defined by the extent of microglial

activation as a continuous variable. Previously, such an association was only demonstrated in

binary groups of MS NAWM displaying “low” or “high” microglial activation. These findings

were reproduced in both an in vivo and an ex vivo model by the presence of persistently ele-

vated levels of TNF/LTα and IFNγ, which indicates that pro-inflammatory cytokines could be

the trigger for this pathology. Further investigations using primary cultures and organotypic

cerebellar slice cultures suggested that glutamate release by microglia and/or astroglia, in

response to stimulation with pro-inflammatory cytokines, could mediate these pathological

changes at the paranodes. Accumulation of abnormal nodes of Ranvier could be responsible

for some of the generalised MS symptoms that cannot be attributed to focal lesions, such as the

fatigue that is reported as a major symptom by 70% to 90% of MS patients [48]. Although the

mechanisms underlying fatigue in MS are not yet understood, it seems likely that the wide-

spread presence of abnormal nodes of Ranvier in the NAWM and the resulting inefficient

action potential conduction could play a role.

The elongation of paranodal axo-glial junctions, indicated by the paranodal axonal protein

Caspr1 in the current study or by its glial counterpart Nf155 [16], suggests that the glial and

axonal proteins may have detached from each other, leading to diffusion along the axolemma.

Therefore, it could represent a partial or complete detachment of the myelin end loops from

the axon and separation of the loops themselves that could result in a complete detachment of

the myelin tongues. Although we have not directly demonstrated this using ultrastructural

analysis, conditional murine knockouts of the paranodal proteins Caspr1, Nf155, βII spectrin,

and 4.1.B [20–24] showed a lack of tight septate junctions and an increased peri-axonal space

at the ultrastructural level, which was associated with an elongation of the paranodal protein

Fig 8. The effects of paranodal disruption on AP conduction is inversely proportional to the axon diameter. (A) Diagram representing the

increment of the paranodal peri-axonal space and a normalised velocity plot at every core diameter as the paranodal peri-axonal space increases.

(B) Diagram representing the increment of the paranodal and juxtaparanodal peri-axonal space and a normalised velocity plot at every core

diameter as the paranodal peri-axonal space increases. (C) Diagram representing the increment of the paranodal and juxtaparanodal peri-axonal

and Kv1 dislocation and a normalised velocity plot at every core diameter as the paranodal peri-axonal space increases. (D) Diagram representing

the increment of the paranodal and juxtaparanodal peri-axonal and Kv1 dislocation and a normalised velocity plot at every core diameter as the

paranodal peri-axonal space increases. (E) In an axon model with a core diameter of 0.4 μm, conduction failure occurred when 5 consecutive

nodes were disrupted (orange), and the paranodal and juxtaparanodal peri-axonal space widths were increased up to 0.012 and 0.12 μm,

respectively. Further, the velocity can decay and conduction can fail under different patterns of disruption (orange means disrupted node, purple,

healthy node, and red denotes conduction failure).

https://doi.org/10.1371/journal.pbio.3001008.g008
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profiles and dislocation of the juxtaparanodal voltage-gated channels Kv1 towards the PNJ,

similar to that seen in MS tissue. This structural change would mean an increment in the

width of the peri-axonal space in the paranode and juxtaparanode and, therefore, a progressive

change in the membrane capacitance of these compartments. The disruption in the adequate

anchorage of Kv1.2 voltage-gated channels within the juxtaparanode has been shown in previ-

ous studies in which the expression of TAG1 and Caspr2, which anchor Kv1 channels to the

axolemma, appeared reduced in NAWM MS tissue [49]. Thus, the partial to complete disrup-

tion of the paranode, as well as the possible dissociation of the tripartite juxtaparanodal com-

plex of TAG-1/Caspr2/Kv1, could explain voltage-gated Kv1 channel diffusion along the

membrane. It is important to note that the disruption to the molecular organisation of the

paranodes occurred in the absence of a change in the localisation of Nav channels at the node

itself, which is in agreement with our previous studies of demyelinating regions of the MS

white matter [47] that showed that changes at the paranodes and movement of Kv1.2 channels

precede alterations at the node, with an altered distribution of nodal proteins only present

when paranodes were absent following demyelination. Overall, these histopathological results

are especially relevant in progressive MS since paranodal pathology can affect the physiological

integrity of axons and can lead to incremental deficits if the inflammatory stimuli persist.

The histopathological analysis of the human tissue showed that a significant proportion of

Caspr1-immunopositive elongated paranodes within the MS NAWM tissue were associated

with the activated microglia surrounding them. It has been suggested that diffuse axonal injury

in the NAWM is closely associated with activated microglia [50–52], and we can now add

paranodal pathology as a characteristic of the NAWM changes. The relationship between neu-

roinflammation and paranodal disruption in myelinated axons was further consolidated by

our rat model of meningeal inflammation induced by the chronic expression of LTα and

IFNγ. Previous studies have demonstrated the presence of paranodal elongation in spinal cord

NAWM regions in a mouse EAE model [16]. However, in this model, the changes in the

NAWM were accompanied by the presence of focal demyelinating lesions and occurred over a

relatively acute time period. On the contrary, the model used for the current experiments was

characterised by widespread microglial activation caused by the chronic presence of pro-

inflammatory cytokines over 3 months in the CSF and the absence of demyelinating lesions

within the brain. The longitudinal elongation of the Caspr1 expressing paranodal axo-glial

junctions and dislocation of the voltage-gated Kv1.2 channels demonstrated that paranodal

disruption can occur in the absence of demyelination. The lack of demyelination also suggests

that the paranodal changes occur in the presence of ongoing electrical activity, and it is possi-

ble that silent axons might be less vulnerable to the combined effects of TNF and IFNγ, gluta-

mate released by activated glia, and oligodendrocyte dysfunction. Although it was not possible

to definitively exclude an influence of anterograde and/or retrograde axonal degeneration that

could occur in the absence of demyelination, focal inflammatory mediators released by micro-

glia and astroglia surrounding the axons are likely to play an essential local role. In fact, the

extent of both the paranodal elongation and dislocation of Kv1.2 channels correlated with the

number of microglia and astroglia surrounding the altered nodes. It is likely that IFNγ may be

playing a major role in this regard as it alone could stimulate glutamate release from microglia,

and it has been shown to act on IFNGR receptors on microglia to prime them for phagocytic

activity [53], to increase expression of TNFR1 [54] and also to promote various pro-inflamma-

tory responses, including TNF and IL6 release [55].

One of the mechanisms of glial injury at these sites could be the disruption of the axo-glial

transport along the myelinic channels of proteins that maintain the adequate structure and

function of these junctions [44,56]. Alternatively, the changes to the structure could be caused

by the activation of calcium-sensitive proteinases, such as Calpain1, if glutamate levels are not
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kept at homeostatic levels. Mature oligodendrocytes in the white matter express AMPA/kai-

nate receptors as well as NMDA receptors [27]. However, whereas AMPA/kainate receptors

are expressed mainly on the cell soma, NMDA receptors are most highly expressed on myeli-

nating processes [25,26,28], where they presumably play a physiological role in sensing gluta-

mate release by other surrounding cells. Therefore, glutamate released along hemichannels by

activated microglia could diffuse into the paranodal and juxtaparanodal peri-axonal spaces

and generate paranodal pathology [17] by acting on NMDA receptors in the cytoplasmic chan-

nels of the myelin sheath, which include the PNJ and the adaxonal glial membrane [56,57].

Our data suggest that both activated microglia and astroglia release elevated amounts of gluta-

mate in response to stimulation by pro-inflammatory cytokines. The effects of these pro-

inflammatory cytokines are highly relevant in the context of MS as recent studies have shown

that TNF, IFNγ, and LTα levels are increased in the CSF of progressive MS patients and corre-

lated with meningeal inflammation, cortical demyelination, and activation of MHCII+ micro-

glia [58,59]. In addition, increased CSF levels of TNF and IFNγ can induce endogenous

expression of TNF and IFNγ in the underlying cortical parenchyma [38]. TNF and LTα inter-

acting with the TNFR1 receptor can induce glutamate release by microglia via a gap junction/

hemichannel system in an autocrine manner [32,33,60] and inhibit glutamate transporters in

astroglia by inducing down-regulation of EAAT2/GLT-1 mRNA [34–36]. The increment in

length of Caspr1+ paranodes in the organotypic slices treated with TNF and IFNγ confirmed

the significant role of these cytokines in the paranodal axo-glial pathology. The findings that

both TNF + IFNγ-treated microglial-conditioned medium and glutamate itself could mimic

the paranodal changes and that the effects of the cytokines could be inhibited by the noncom-

petitive NMDA antagonist MK-801 strongly implicate glutamate signaling as a key molecular

mediator driving paranodal pathology in the NAWM of the MS brain. Our study did not look

at the effects of MK801 alone on the organotypic slice cultures. However, although MK-801

has been reported to induce neurotoxicity when administered chronically at high doses in vivo

[61,62], no paranodal myelin damage was observed when isolated spinal cord tissues were

treated with MK801 alone at the same dose used in our study [17]. In further support of our

experimental results, MRS studies in MS patients have demonstrated increased free glutamate

in regions of MS NAWM compared to healthy controls [29–31], and increased glutamate lev-

els have also been found in MS CSF [63]. Our novel result also opens the possibility of thera-

peutic intervention by reducing microglial/astroglial glutaminase activity, blocking microglial

hemichannels (Cx32, Cx36, and Cx43), or by inhibiting TNF and IFNγ signaling.

Our biophysical model simulations of a CNS myelinated axon suggest that the functional

consequences of changes at the paranode on AP conduction could be highly detrimental, even

if only a small proportion of paranodes along a myelinated axon are disrupted. Recent compu-

tational models have simulated paranodal retraction by increasing the nodal width [64] equat-

ing the nodal resistance to the paranodal resistance [65] or by reducing the number of myelin

loops in the paranode [66]. However, these models only simulated these conditions in a single

axon diameter [64,65] or in a few of them [66] and in axons that were usually�1 μm. In our

simulations, paranodal disruption was progressively generated by an increment in the peri-

axonal space width, which led to velocity reduction and conduction failure in small-diameter

axons. This is in line with thin axon diameter biophysical theory on saltatory conduction with

ion channel delocalization [67] and also stresses the importance of the width of the peri-axonal

space [41]. Our data imply that, because axons with small diameter have a lower myelin sheath

resistance and a higher axoplasmic resistance, they have a higher dependency on the structural

integrity of the PNJ to shunt electrical currents and maintain fast and efficient conduction.

Furthermore, these results also highlight the importance of modelling the paranodal and juxta-

paranodal compartments, as well as the nodal and internodal compartments, as they are highly
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sensitive regions that are essential in balancing charge flows with the node of Ranvier. In MS

NAWM tissue, the distribution and density of activated microglia and macrophages can vary

significantly throughout the WM tracts of the brain and spinal cord [3,16,50,51]. To take this

heterogeneity into consideration, we decided to simulate different patterns of disrupted (para-

node and juxtaparanode width increment) and healthy nodes to characterise the effect of a

highly variable paranodal junction disruption on AP conduction within a myelinated axon,

from mildly to severely affected. This showed that conduction failure occurred in axons with a

fibre diameter smaller than 0.8 μm with just 5 consecutive disrupted paranodes. Different pat-

terns of disrupted and healthy paranodes made conduction fail at some point along the path in

axons with a fibre diameter smaller than 1.1 μm. These simulations not only demonstrate that

AP velocity can significantly decrease when the structure of the paranodal axo-glial junction is

disrupted but also show that conduction failure of a myelinated axon might depend on the

number of consecutive nodes disrupted and the number of healthy nodes in between patches

of disrupted nodes. Therefore, they demonstrate that diffuse paranodal axo-glial junction

pathology in MS NAWM can significantly alter the efficiency and velocity of AP conduction,

and consequently the overall neurological function in MS.

In conclusion, our data strongly suggest that diffuse pathology in the NAWM, which

includes paranodal disruption, could be caused by the presence of local cytokine-induced

inflammation leading to excess glutamate release from microglia. Such paranodal pathology,

which cannot be attributed to focal demyelinating lesions, would be expected to alter the effi-

ciency and velocity of AP conduction, adding to the overall neurological dysfunction in MS.

This could also be relevant to white matter changes seen in other neurodegenerative condi-

tions in which chronic microglial activation is a feature.

Materials and methods

Human postmortem tissue

Tissue blocks for this study were provided by the United Kingdom Multiple Sclerosis Society

Tissue Bank at Imperial College London. Brains were collected following fully informed con-

sent via a prospective donor scheme following ethical approval by the National Multicentre

Research Ethics Committee (MREC 02/2/39). Thirty-four tissue blocks (2 × 2 × 1 cm) were

selected from 20 cases of neuropathologically confirmed SPMS (Table 1; 11 females) with a

mean age of 54.3 yrs (range 38 to 76 y), mean postmortem delay (PMD) of 22 h (range 12 to 48

h), and a mean disease duration of 28.4 y (range 12 to 42 y). Sixteen blocks were also selected

from 9 non-neurological control brains (Table 2; 3 females), with a mean age of 73.7 y (range

50 to 88 y) and a mean PMD of 23 h (range 8 to 48 h). All tissue blocks were from the precen-

tral gyrus (containing the primary motor cortex) and the cerebral peduncle located in the mid-

brain, due to the presence of white matter (WM) tracts that contain highly longitudinally

aligned axons that would make quantitative analysis more precise. The blocks were fixed in 4%

paraformaldehyde in PBS (4% PFA), cryoprotected in 30% sucrose, frozen in isopentane on

dry ice, and stored at −75˚C. Cryosections were cut at a thickness of 10 μm and stored at

−75˚C.

Primary and secondary antibodies

The primary antibodies used in this project were: mouse anti-MOG (clone Y10, Prof R Rey-

nolds, Imperial College London, UK); rabbit anti-myelin basic protein (MBP) (Polyclonal,

Merck, Darmstadt, Germany); mouse anti-neurofilament-H protein (clone NE14; Merck,

Darmstadt, Germany); mouse anti-dephosphorylated neurofilament protein (clone smi32;

Biolegend, San Diego, California, United States of America); rabbit anti-caspr1 (clone
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EPR7828, Abcam, Cambridge, UK); mouse anti-caspr1 (clone K65/35; Neuromab, Davis, Cali-

fornia, USA); mouse anti-pan-Nav channels (clone K58/35, Neuromab, Davis, California,

USA); mouse anti-Kv1.2 channels (clone K14/16, Neuromab, Davis, California, USA); mouse

anti-HLA-DR (clone TAL.1B5, Dako Agilent, Santa Clara, California, USA); rabbit anti-IBA1

Table 1. Demographic data for postmortem MS cases.

Case no Age (y) PMD (h) Gender Duration (y) Cause of death

MS404 55 17 F 34 Pneumonia, septicaemia

MS406 62 23 M 42 Pneumonia, MS

MS411 61 24 M 29 Pneumonia, MS

MS422 58 25 M 25 Pneumonia, MS

MS444 49 18 M 20 Renal failure

MS461 43 13 M 21 Bronchopneumonia

MS466 65 25 F 36 Pneumonia, Lung carcinoma

MS478 63 24 F 39 Bowel cancer, MS

MS500 50 32 M 29 Urinary sepsis

MS510 38 19 F 22 Pneumonia

MS517 48 12 F 25 Chest sepsis, MS

MS523 63 20 F 32 Bronchopneumonia, MS

MS530 42 15 M 21 MS

MS535 65 12 F 40 MS

MS542 76 12 F 35 Pneumonia, MS

MS549 50 8 M 29 MS

MS567 45 48 F 23 MS

MS584 42 26 F 12 MS

MS585 53 27 F 27 Bronchopneumonia, MS

MS587 58 36 F 20 Cardiac arrest, MS

N = 20 mean = 54 mean = 22 22F:12M mean = 28

Age at death, postmortem delay, gender, and duration of disease of the MS cases used in this study. The case numbers represent the UK MS Society Tissue Bank case

identifiers. The cause of death is that presented on the death certificates.

MS, multiple sclerosis; PMD, postmortem delay.

https://doi.org/10.1371/journal.pbio.3001008.t001

Table 2. Demographic data for postmortem non-neurological control brains.

Case no Age (y) PMD (h) Gender Cause of death

C48 68 10 M Colon cancer

C54 66 16 M Not available

C72 77 26 M Pneumonia

C74 84 22 F Old age

C75 88 8 M COPD

C76 87 31 M Pneumonia

PDC29 82 48 M Liver and lung cancer

PDC39 50 28 F Renal cancer

PDC40 61 15 F Ovarian cancer

N = 9 mean = 74 mean = 23 5F:11M

Age at death, postmortem delay, and gender of the control cases used in this study. The case numbers represent the UK MS Society Tissue Bank (e.g., C48) and UK

Parkinson’s Disease Brain Bank case identifiers (e.g., PDC29). The cause of death is that presented on the death certificates.

COPD, chronic obstructive pulmonary disease; PMD, postmortem delay.

https://doi.org/10.1371/journal.pbio.3001008.t002
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(Polyclonal IgG, Wako Pure Chemical Corporation, USA); rabbit anti-Glial Fibrillary Acidic

Protein (GFAP) (Polyclonal, Dako Agilent, Santa Clara, California, USA); mouse anti-Calbin-

din1 (clone CB-955, Merck, Darmstadt, Germany); and mouse anti-NeuN (clone A60, Merck,

Darmstadt, Germany) (Table 3). All the secondary antibodies used for immunofluorescence

were purchased from ThermoFisher Scientific (USA): Alexa Fluor 546 Goat Anti-Mouse IgG

(H+L), Alexa Fluor 546 Goat Anti-Rabbit IgG(H+L), Alexa Fluor 488 Goat Anti-Mouse IgG

(H+L) Fluor 488 Goat Anti-Rabbit IgG (H+L), Alexa Fluor 488 Goat Anti-Mouse IgG1, Alexa

Fluor 546 Goat Anti-Mouse IgG1, Alexa Fluor 647 Goat Anti-Mouse IgG1, Alexa Fluor 488

Goat Anti-Mouse IgG2b, Alexa Fluor 647 Goat Anti-Mouse IgG2b, Alexa Fluor 488 Streptavi-

din, Alexa Fluor 546 Streptavidin, and Alexa Fluor 647 Streptavidin. For immunohistochemis-

try, the following biotinylated antibodies were used from Vector Laboratories (UK):

biotinylated anti-rabbit IgG (H+L) made in goat, biotinylated anti-mouse IgG (H+L) made in

horse, and biotinylated anti-mouse IgG2a made in goat (Life Technologies, ThermoFisher

Scientific).

Immunostaining on postmortem human tissue

For immunofluorescence for all antigens, sections were fixed with 4% PFA for 30 min

(Table 3), except for the Pan-Na channel antibody, for which fixation was not longer than 10

min. After fixation, sections were post-fixed with 100% methanol at −20˚C (Sigma) for 10 min

and washed in 0.1 M PBS-0.3% Triton X-100 (Sigma-Aldrich) 3 times, 5 min each. After post-

fixing, sections were blocked and permeabilised with 0.1 M PBS containing 10% normal

horse/goat serum (Sigma-Aldrich) and PBS-0.3% Triton X-100 for 1 h at room temperature.

Finally, sections were incubated overnight at 4˚C in a humid chamber with primary antibodies

(Table 3) in 0.1 M PBS containing 10% normal horse/goat serum and PBS-0.3% Triton X-100

(Sigma-Aldrich). After primary antibody incubation, sections were thoroughly rinsed in 0.1 M

PBS at least 3 times, 5 min each. After rinsing, sections were incubated with the appropriate

secondary antibody conjugated to biotin for 1 h for MOG, SMI32, and Pan-Nav antigens and

rinsed in 0.1 M PBS. After rinsing, sections were incubated with Alexa Fluor Streptavidin or

the appropriate species-specific secondary fluorochrome conjugated antibody for 2 h at room

temperature. Finally, the tissue was rinsed in 0.1 M PBS and dH2O, nuclei counterstained with

Table 3. Primary antibody details.

Antibody Specificity Dilution Clone Source

MOG Myelin oligodendrocyte glycoprotein 1:50 Mouse (IgG2a) Y10 Reynolds, Imperial

MBP Myelin basic protein 1:500 Rabbit polyclonal Merck

NFil 200 kD neurofilament protein 1:500 Mouse (IgG1) NE14 Merck

SMI32 Dephosphorylated neurofilament proteins 1:500 Mouse (IgG1) SMI32 BioLegend

Caspr1 Contactin-associated protein 1 1:300 Rabbit EPR7828 Abcam

Caspr1 Contactin-associated protein 1 1:500 Mouse (IgG1) K65/35 Neuromab

Pan-Nav Voltage-gated sodium channels 1:100 Mouse (IgG2a) K58/35 Neuromab

Kv 1.2 Voltage-gated potassium channel 1.2 1:100 Mouse (IgG2a) K14/16 Neuromab

HLA-DR MHC class II human leucocyte antigen DR 1:200 Mouse TAL.1B5 Dako Agilent

IBA1 Ionized calcium binding adaptor molecule 1 1:500 Rabbit polyclonal Wako

GFAP Glial fibrillary acidic protein 1:500 Rabbit polyclonal Dako Agilent

Calbindin1 Calbindin1 (Purkinje neurons) 1:500 Mouse (IgG1) CB-955 Merck

NeuN Neuron specific nuclear protein 1:500 Mouse (IgG1) A60 Merck

Antigen, specificity, concentration, clone, and source of the primary antibodies used in this project.

https://doi.org/10.1371/journal.pbio.3001008.t003
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DAPI (diluted in 1:2000, Sigma-Aldrich), and mounted with Vectashield Antifade Mounting

Media (Vector Laboratories). The coverslips were fixed to the slides with clear nail polish.

Immunohistochemistry was performed for HLA-DR antigen with the ImmPRESS HRP

Anti-Mouse IgG (Peroxidase) Polymer Detection Kit, made in horse (Vector Laboratories).

Tissue endogenous peroxidase activity was blocked with the Bloxall Blocking solution (SP-

6000) for 10 min and then incubated with 2.5% horse serum for 20 min. After blocking and

washing with 0.1 M PBS, the primary antibody was incubated overnight at 4˚C in a humid

chamber. The ImmPRESS Polymer Reagent was incubated at room temperature for 30 min,

and the signal was developed with ImmPact DAB (SK-4105, Vector Laboratories). The tissue

was then rinsed with tap water for 5 min to stop the reaction. Slides were counterstained with

haematoxylin (Sigma-Aldrich) for 5 min, washed with tap and distilled water, dehydrated with

washes of 70%, 90%, and 100% of ethanol (2 min each), cleared with xylene for 10 min and

mounted with DPX mounting medium (Sigma-Aldrich).

Lentiviral vector production

Lentiviral (LV) vectors expressing the human LTα (LVLTα), human IFNγ (LVIFNγ), or

enhanced green fluorescent protein (LVGFP) genes were produced exactly as described previ-

ously [38], using the human immunodeficiency virus type 1 (HIV-1) transfer vector (pRRL-

sincppt-CMV-eGFP-WPRE genome plasmid) with a human cytomegalovirus promoter

(CMV) promotor. Complementary DNA sequences (cDNA) for human LTα or IFNγ were

codon optimised for rat, including a 50 Kozak sequence, and synthesised by Gene Art (Life Sci-

ences, Paisley, UK). The biological and physical titres of the purified and concentrated vectors

were calculated as described previously [38]. The LV genome copy number was calculated

using the Clontech Lenti-X qRT-PCR Titration kit (Takara, Saint-Germain-en-Laye, France).

Stereotaxic surgery and tissue processing

Eleven 8- to 10-week-old female Dark Agouti (DA) rats (140 to 160 g) were obtained from Jan-

vier (France) and kept in groups of 3 to 4 in a 12-h light/dark cycle with food and water pro-

vided ad libitum. Stereotaxic injections of LV vectors into the subarachnoid space were carried

out at 0.9 mm caudal to bregma, in the midline, following previously published methods

[38,68]. Rats were either naive with no treatment or were injected once with incomplete

Freund‘s Adjuvant (IFA). Rats were induced and maintained under general anaesthesia for the

entire procedure using 2% isoflurane (Abbott Laboratories, Berkshire, UK, and oxygen 2 l/

min), their scalps were shaved and disinfected with Videne antiseptic solution (Ecolab, North-

wich, United Kingdom). Subcutaneous injections of 0.9% saline (Sigma) and 0.01 mg/kg

buprenorphine (Vetergesic; Alstoe Animal Health, North Yorkshire, UK) were performed to

provide post-surgery rehydration and analgesia. Rats were positioned on the stereotaxic frame

(Stoelting, Dublin, Ireland), and an incision was made through the scalp to visualise the skull

bregma. A 2 mm diameter hole in the skull was drilled at the midline at 0.9 mm caudal to

bregma, at the level of the motor cortex. Injections were performed with a finely calibrated

glass capillary attached to a 26-gauge needle of a 10 μl Hamilton syringe (Hamilton, Graubun-

den, Switzerland). The needle was inserted to a depth of 2.4 mm below the dural membrane.

Four μl of LV vector preparation (2 μl of each vector), diluted in TSSM with 0.5 mM monastral

blue tracer, was introduced at a rate of 0.2 μl/min using an automated infuser (KD Scientific,

USA). Viruses were injected at a total of 1 × 1012 genomic copies/μl (GC/μl) for LTα and GFP

and 1 × 1010 GC/μl for IFNγ. The needle was left in place for 5 min to allow diffusion of the

sample from the area of injection, then withdrawn and the incision was sutured (Mersilk;
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Covidien, Ireland). The sutures were removed after 7 to 10 days, and the animals were moni-

tored daily.

At the termination of the study, rats received an overdose of sodium pentobarbital (200

mg/ml Euthatal; Merial Animal Health, Essex, UK) by intraperitoneal injection. Rats were per-

fused with 50 ml PBS followed by 100 ml 4% PFA in PBS through the left ventricle at 90 days

post vector injection. Brains were removed and post-fixed in 4% PFA (4 h, room temp), prior

to cryoprotection in 30% sucrose solution in PBS (48 h or until equilibrated). Brains were

embedded in optimal cutting temperature compound (OCT; Tissue-Tek; Sakura, the Nether-

lands), frozen in isopentane on dry ice and sectioned at 10 μm in the coronal plane throughout

the brain. The rat tissue sections were stained following the same protocol as the human tissue

except the initial 4% PFA fixation step.

Primary rat microglial and astroglial cultures

P0-P2 Sprague Dawley rats (Charles River Laboratories, USA) were decapitated following the

UK Home Office regulations. The brains were isolated, and the cerebral cortices were dissected

with sterile autoclaved tweezers and dissecting scissors and freed of meninges to avoid any

fibroblast contamination. The cortices of 3 pups were transferred to a 50 ml sterile polypropyl-

ene conical tube with dissection medium, which contained Hank’s Balanced Salt Solution

(HBSS 1X, Gibco, ThermoFisher Scientific). The supernatant was removed and replaced by

digestion mix containing Minimum Essential Media (MEM with 4 mM glutamine, Gibco,

ThermoFisher Scientific), 2.5 mg/ml Papain (14 units/mg, Sigma-Aldrich, Merck), 40 g/ml

DNAse (980 Units/mg, Sigma-Aldrich, Merck), and 240 g/ml l-Cysteine (Sigma-Aldrich,

Merck). The 50 ml Falcon tubes were placed in a water bath (Fisher Scientific) at 37˚C for 1 h;

every 15 min, the tissue was dissociated by gentle pipetting. After 1 h, the cortices were resus-

pended in 30 ml warm dissection medium, filtered through a 70 μm nylon cell strainer (Corn-

ing Incorporated, USA) to remove any non-dissociated fragments and centrifuged at 500 rpm

for 5 min. The supernatant was discarded and the pellet resuspended in 15 ml of culture

medium. The culture medium was Dulbecco’s Modified Eagle Medium Nutrient Mixture F-12

(DMEM F12, Gibco, ThermoFisher Scientific) supplemented with 5 ml streptomycin-penicil-

lin (10,000 U/mL, Gibco, ThermoFisher Scientific), 5 ml L-glutamine (200 mM, Gibco, Ther-

moFisher Scientific), and 50 ml heat-inactivated fetal bovine serum (Sigma, Merck). The

mixture of dissociated cells was plated in a T75 culture flask (Nunc EasyFlask 75 cm2 cell cul-

ture flasks, Thermo Scientific), previously coated with poly-D-lysine hydrobromide (PDL,

Sigma, Merck) for 2 h and washed with sterile water 3 times. The mixed glial cultures were

maintained for 1 week in a humidified incubator at 37˚C and 5% CO2 for 1 week, and half the

medium was changed every 2 days to replace growth factors. After a week, astroglia formed a

connected confluent dense monolayer in the bottom of the flask, whereas the majority of the

microglia were floating. Primary microglial cells were isolated from the astroglial cell bed by

mechanical agitation by vigorously tapping the flasks. Subsequently, the cells were plated in a

24-well plate (Nucleon Delta Surface, Thermo Scientific) at a cell density of 5 × 104 cells/well.

After 24 h, microglia were attached to the bottom of the plate, and they were treated with the

pro-inflammatory cytokines. Primary astroglial cultures were prepared from the confluent

layer of astroglia remaining on the bottom of the flask. Cells were detached with Accutase solu-

tion (Sigma-Aldrich) and replated at 5 × 105 cells per well into PDL-coated 24-well plates.

Cerebellar organotypic tissue cultures

P8/P9 Sprague Dawley rats (Charles River Laboratories) were decapitated following the UK

Home Office regulations. The hemispheres were separated and plated in a petri dish
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containing a sterile filter paper and cold dissection medium (DMEM), supplemented with 5 ml

of streptomycin-penicillin (10,000 U/mL, Gibco, ThermoFisher Scientific). Hemispheres were

mounted with Superglue together with a rectangular piece of sterile solid agar (4 g of agar

(Sigma) in 200 ml of distilled water) and sliced using a Leica VT1200s vibratome in the parasa-

gittal plane at 400 μm thickness. The cerebellar slices were transferred into a 60 mm petri dish

containing cold medium until the whole hemisphere was sliced. Later, they were plated on sterile

Biopore PTFE membranes of 0.4 μm pore size (Millicell-CM culture inserts, Merck) in a sterile

6-well plate (Costar, Corning Incorporated) with 1 ml of nutrient medium underneath every cul-

ture insert. The nutrient medium contained 200 ml Neurobasal-A-medium (Gibco, Thermo-

Fisher Scientific) and 100 ml Hank’s Balanced Salt Solution (HBSS 1X, Gibco, ThermoFisher

Scientific) supplemented with 5 ml streptomycin-penicillin (10,000 U/mL, Gibco, ThermoFisher

Scientific), 5 ml L-glutamine (200 mM, Gibco, ThermoFisher Scientific), 4.4 ml D-glucose (200

g/L, Gibco, ThermoFisher Scientific), and 2 ml vitamin B27 Plus Supplement (50X, Gibco, Ther-

moFisher Scientific). One to two cerebellar slices were plated per insert and maintained in an

incubator (HeraCell Vios 160i, ThermoFisher) at 37˚C, 5% CO2 for 9 to 10 days, replacing half

the medium every other day to replace the growth factors. In order to check the integrity of the

slices, the macroscopic structure was checked with an inverted microscope (Olympus CKX53).

They were also stained with the cell integrity marker propidium iodide (PI, Molecular Probes).

PI was added at a concentration of 5 μg/ml, incubated for 60 min in the culture medium and

imaged with the inverted fluorescence microscope. After 9 to 10 days, in vitro (DIV) healthy

slices flattened to approximately 100 μm and were selected for further experiments.

Cerebellar and glial culture treatment

The cerebellar slices were treated either 3 times 24 h apart with combinations of recombinant

TNF (recombinant rat TNF, Biolegend), LTα (recombinant human LT-α, Abcam), and IFNγ
(recombinant rat IFNγ, Biolegend) at 50 ng/ml or twice 24 h apart at a concentration of 100 ng/

ml (glutamate levels were always measured 24 h after the last dose). The microglial cultures were

treated either once or twice with doses of 100 ng/ml or 200 ng/ml of TNF, IFNγ, LT-α, TNF

+ IFNγ, and LT-α + IFNγ (each dose was administered every 24 h, and glutamate levels were

always measured 24 h after the last dose). The cerebellar cultures were also treated with condi-

tioned microglial medium after two 100 ng/ml doses of TNF + IFNγ (in this case, each well con-

tained 800 μl of conditioned medium and 200 μl of nutrient medium). In addition, the cerebellar

slices were treated directly with glutamate (L-Glutamic acid, Sigma-Aldrich, Merck) twice every

24 h at a concentration of 75 μM and 100 μM. A group of slices treated with 100 ng/ml of TNF

+ IFNγ were also incubated at the second dose with 0.6 mM of MK-801 maleate [17], which is a

noncompetitive NMDA antagonist (ab120028, Abcam). The culture medium was replaced

entirely when the cytokines or glutamate were added to the primary microglia or to the tissues.

Primary astroglia were treated 24 h after plating with 100 or 200ng/ml of recombinant rat

TNF (Biolegend) and recombinant rat IFNγ (BioLegend). For glutamate release assays, cells

were incubated in ABM astrocyte Basal medium supplemented with AGM astrocyte growth

medium Bulletkit for 24 h, while for glutamate uptake assays, 100 μM glutamate was added.

Culture supernatant was collected and glutamate concentration in the medium was measured

as described below. Glutamate uptake by astrocytes was measured by subtracting the amount

of glutamate measured in the medium from the amount initially added to the cells.

Immunofluorescence of organotypic cerebellar slice cultures

Immunofluorescence analysis of the cerebellar slices was carried out as previously published

[69]. The cultures were fixed with cold 4% PFA (1 ml added on top of the filter and 1 ml
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underneath) for 1 h at room temperature. After fixation, sections were post-fixed with 20%

methanol and washed in 0.1 M PBS-0.3% Triton X-100. For further permeabilisation, slices

were incubated with 0.1 M PBS-0.3% Triton X-100 overnight. After permeabilisation, slices

were blocked with 20% bovine serum albumin (BSA, Sigma, Merck) and PBS-0.3% Triton X-

100 for a minimum of 4 h at room temperature. Slices were removed from the insert and incu-

bated overnight with primary antibodies (Table 3) at 4˚C in a humid chamber. After primary

antibody incubation, sections were thoroughly rinsed in 0.1 M PBS, 3 times 10 min each and

incubated with the appropriate secondary antibody conjugated to the appropriate fluoro-

chrome for 4 h at room temperature. The tissue was rinsed in 0.1 M PBS (3 times, 10 min

each) and dH2O, nuclear counterstained with DAPI (diluted in 1:2000), and mounted on slides

with Vectashield Antifade Mountant. Coverslips (24 × 50 mm, VWR, International) were

fixed to the slides with clear nail polish.

Glutamate colorimetric assay

The glutamate concentration in the conditioned medium of primary microglial cultures was

assayed with the glutamate colorimetric assay kit from Abcam (no. 83389), according to the

manufacturer’s instructions. The samples were incubated at 37˚C for 30 min, and the absor-

bances read at 450 nm using a SPARK multimode reader (Tecan, Männedorf, Switzerland).

The glutamate concentration was extrapolated from the standard curve regression equation

and the absorbances corrected for background values. Results were expressed in μM and repre-

sented by the mean ± standard error of the mean (SEM) of 3 to 4 duplicates per condition.

Data analysis

All the data were processed in R (R Project for Statistical Computing) and plotted with the

package ggplot2. For the human tissue data, the rat tissue data, and the organotypic tissue cul-

tures, the nonparametric Mann–Whitney test was used to compare groups and nonparametric

Spearman rank correlation test for correlation between variables. For the rat tissue data, the

Kruskal–Wallis test was also used to compare across groups. For the microglial culture studies,

the nonparametric Friedman rank sum test was used to compared across treatment groups

and timings, and Wilcoxon pairwise comparison with a Bonferroni correction was used to

compare between groups (�p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001). Mean ± SEM

per group was calculated in all the cases, and box plots (showing the median, the 25% to 75%

quartiles, the minimum and the maximum), bar graphs, or point graphs were plotted.

Image acquisition and analysis

Images of immunostained sections from the postmortem human tissue and the rat tissue were

obtained with an epifluorescence Olympus BX63 scanning microscope or a SP8 Leica confocal

microscope. The cerebellar organotypic cultures were imaged exclusively with the confocal

microscope due to their thickness. For the latter, a range of 4 to 6 z-stacks were taken with an

average thickness of 15 μm with a step size of 0.3 μm. All images were analysed using Fiji

(Image J, NIH, USA) and prepared in Illustrator (Adobe Systems). The quantification of all the

cases/samples was performed with the observer blinded to case identification. Regions of inter-

est (ROIs) in human MS tissue were defined as NAWM regions at least 4 mm away from a

focal demyelinating lesion. MOG immunofluorescence images were taken at 4× to get an over-

all scan area of the whole block to select NAWM regions. In the postmortem human tissue, 10

images of HLA-DR+ staining from NAWM regions were taken at 20×. Microglial activation

was analysed by quantifying the area occupied by HLA-DR+ microglial labelling microglia by

thresholding the images to a specific intensity per image acquired and dividing them by the
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total area of each image. In the rat tissue, the number of IBA1+ microglia and GFAP+ astroglia

were counted in images taken at 60× magnification.

PNJ disruption was analysed by measuring the length of the axonal paranodal protein

Caspr1 immunofluorescence staining in the postmortem human tissue, rat tissue, and cerebel-

lar organotypic tissue slices. Caspr1, Pan-Na, Kv1.2, and Caspr1-SMI32 triple and double

immunofluorescent images were captured with a 63× oil immersion objective. Only Caspr1

positive axons that were in focus were measured in 10 ROIs in the human and rat tissues. In

the cerebellar organotypic slices, the ROIs corresponded to a range of 4 to 6 z-stacks located in

the regions with a high density of Purkinje cell axons. In rat sections and cerebellar organoty-

pic tissue slices, 200 focused Caspr1-stained paranodes were measured in each preparation. In

the postmortem human tissue, a total of 6,800 Caspr1-stained paranodes from 34 blocks of 10

pathologically confirmed cases and 3,200 Caspr1-stained paranodes from 16 blocks of 10 con-

trol cases were analysed. In the rat tissue, 1,000 Caspr1-stained paranodes from the LT-α
+ IFNγ group, 600 from the GFP group, and 600 from the naïve group were analysed. In the

cerebellar organotypic tissue slices, we analysed 1,200 Caspr1-stained paranodes from 6 cere-

bellar slices treated with 50 ng/ml of TNF + IFNγ, 800 Caspr1-stained paranodes from 2 cere-

bellar slices treated with 100 ng/ml of TNF + IFNγ, 800 Caspr1-stained paranodes from 4

control cerebellar slices, 1,000 Caspr1-stained paranodes from 5 cerebellar slices treated with

microglial conditioned medium, 800 Caspr1-stained paranodes from 4 cerebellar slices treated

with 75 μM glutamate, 400 Caspr1-stained paranodes from 4 cerebellar slices treated with

100 μM glutamate, and 1,000 Caspr1-stained paranodes from 5 cerebellar slices treated with

TNF + IFNγ and MK-801.

For quantification of voltage-gated Kv1.2 and Nav channel dislocation, Caspr1-Kv1.2 and

Caspr1-Nav double fluorescent images were taken with the 60× oil immersion objective for

each human and rat sample. Only positive Caspr1-Kv 1.2 and Caspr1-Pan Nav axons were

studied, in 10 ROIs, with a minimum of 50 axons per tissue block. RGB line intensity profiles

of Caspr1, Kv 1.2, and Pan Nav were obtained along the length of the stained axon to assess K

and Na channel dislocation. An overlapping region between 2 signals was defined as the axonal

area where Kv or Nav channels were located in the paranodal axolemma. Using RGB intensity

line profiles acquired with Fiji, intensity signals of Kv1.2 or Nav and Caspr1 were subtracted

from one another per axon. If the difference between both signals was smaller than a variable

threshold at the same point in distance, an overlapping region was confirmed. Moreover, the

total proportion of axons with overlapping regions was measured in MS and non-neurological

human tissue and in the GFP, LTα-IFNγ, and naive rat tissue. The means ± SEM of all line

profiles were calculated per case and across groups (the code used to calculate channel disloca-

tion can be found in S1A Text).

Computational modelling

A double cable core model composed of 21 nodes was built and solved numerically in NEU-

RON [70] using the backward Euler implicit integration method [40]. The equilibrium poten-

tial was set to −80 mV, and the simulations were run at a temperature of 37˚C. The code used

to generate this model can be found in the S1B Text. The geometrical and biophysical parame-

ters used in this model are summarised in Fig 7B and 7C. Simulations across the 7 different

diameters (d core = 0.4, 0.6, 0.8, 1, 1.2, 1.4, 2.7 [μm]) were initiated and allowed to reach the

resting potential for 1 ms before a current of 2 nA was injected in the midpoint of node 1 as a

square pulse of 0.1 ms duration. The relationship between the core diameter, fibre diameter,

and myelin sheath thickness was taken from EM studies of the macaque brain [42]. The num-

ber of myelin sheath was calculated from the myelin periodicity value of 0.0156 μm [71]. The
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node to node length was taken from the linear relationship measured from rat nerve fibres

(117.52 + 30.47 � dfibre) [72]. The juxtaparanodal length was extrapolated from the diameter-

dependent scaling relationship from the ventral root of cats (19.6 + 2.58 �dfibre) [73]. The para-

nodal length was determined from the average value of Caspr1 staining from the non-neuro-

logical control tissue, and the internodal length was derived from the subtraction of 2

paranodes and juxtaparanodes lengths from the node-to-node length across the 7 diameters.

The nodal length (1 μm) was kept constant for simplicity reasons. Lastly, the peri-axonal space

dimensions of the paranode, juxtaparanode, and internode were based on the data measured

by following dextran tracers in myelinated fibres of mouse sciatic nerves [74]. The propagation

of the AP along the axon was measured up to 10 ms (2,000 points plotted/ms), and measure-

ments were recorded at nodes 4 and 16 AP, and the AP amplitude, width, and conduction

velocity were measured. AP amplitude [mV] was described as the voltage difference between

the most negative voltage during the hyperpolarisation afterpotential and action potential peak

(Vmax). AP width [ms] was defined as the time difference at half the amplitude, and conduction

velocity [m/s] as the distance between Vmax of the spikes at node 4 and 16. We used 4 types of

voltage-gated channels, which were as follows: Fast Nav channels, Persistent Nav channels,

Slow Persistent Kv channels, and Fast Kv channels and Leakage channels. The following volt-

age-gated channel characteristics were used in our model:

The maximum nodal Nav channel density was set to 1,000 channels/μm2 [75,76] and the

single conductance of a fast Nav channel set to 15 pS [77]. Thus, the maximal conductance was

1.5 S/cm2. Fast Nav channel gating was based on the gating dynamics from measurements of a

human nerve used by Schwarz and colleagues [78] at 20˚C. The following gating dynamics

were based on these experimental data, and the temperature change was adjusted with a

q10 = 2.2 [39,40,79].

INa = gNa
� m3 � h � (Vm − ENa)

αm = 6.57(Vm + 20.4)/(1 − exp(−(Vm + 20.4)/10.3) βm = 0.304(−(Vm + 25.7)/(1 − exp((Vm

+ 25)/9.16) αh = 0.34(−(Vm + 114))/(1 − exp((Vm + 114)/11) βh = 12.6/(1 + exp(−(Vm + 31.8)/

13.4)

Persistent Nav channel conductance was based on the data from rat ulnar nerves [80]. The

estimated density was 6.5 channels/μm2 with a conductance of a single channel of 20 pS. Thus,

the maximum conductance in this model was set to 0.01 S/cm2. This value was taken from pre-

vious myelinated axon computational studies [39,40]. The membrane gating dynamics used

were the same as previous computational models [39,40,81].

INap = gNap
� p3 � (Vm − ENa)

αp = 0.0353(Vm + 27)/[1 − exp(−(Vm + 27)/10.2]

βp = 0.000883(−(Vm + 34))/[1 − exp((Vm + 34)/10]

Slow Kv channels have an estimated density of 110/μm2 [82]. From human nerve

electrophysiological studies, the single conductance of a channel was quantified to be between

7 and 10 pS [76,82,83]. In this model, the single conductance of a slow Kv channel was set to 8

pS. Thus, with a density of 110 channels/μm2 and the maximum conductance was 0.088 S/

cm2. The gating dynamics were based on the model of McIntyre and colleagues [40].

IKs = gKs
� s � (Vm − Ek)

αs = 0.3/(1 + exp((Vm + 53)/5))

βs = 0.03/(1 + exp((Vm + 90)/ − 1))

The density of fast Kv channels was estimated to be 12 channels/μm2 [82], while the single

conductance of a channel measured in the rat peripheral nerve was 17 pS [82,84]. Thus, the

maximum conductance in our model for the fast Kv channels was set to 0.02 S/cm2. These val-

ues have been used in previous computational studies (q10 = 3) [40,82].

Ik f = gk f
� n4 � (Vm − Ek)
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αn = 0.00798(Vm + 93.2)/(1 − exp(−(Vm + 93.2)/1.1))

βn = 0.092(−(Vm + 76))/(1 − exp(−(Vm + 76)/10.5))

The leak conductance of the node was set to gl = 0.007 S/cm2 [80], while the leak conduc-

tance of the paranode was gl = 0.0005 S/cm2, the juxtaparanode and internode conductances

were gl = 0.005 S/cm2 [85].
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Supporting information

S1 Fig. Paranodal Length of MS and non-neurological control blocks. Box plots represent-

ing the distributions of paranodal length from NAWM MS and non-neurological control tis-

sue per case. In the y axis, the indexes “cbp” correspond to the cerebral peduncle blocks, while

the indexes “pcg” correspond to the precentral gyrus blocks. MS, multiple sclerosis; NAWM,

normal-appearing white matter. Data and code to reproduce this figure can be found at:

https://github.com/PatGal2020/PLOS_submission.

(TIF)

S2 Fig. The location of nodal Nav channels was not disrupted in MS NAWM tissue. (A)

Confocal images of a double immunofluorescence of Caspr1-stained paranode and nodal volt-

age-gated Nav channels with the RGB intensity profile of both immunofluorescence signals

across the nodal and paranodal compartments. (B) Caspr1 signal was subtracted from Nav,

and when the difference between them was smaller than a variable Intensity Threshold, that

point was considered an overlapping region. For every threshold calculated, the proportion of

overlapping regions was very similar in both groups. MS, multiple sclerosis; NAWM, normal-

appearing white matter. Data and code to reproduce this figure can be found at: https://github.

com/PatGal2020/PLOS_submission.

(TIF)

S3 Fig. Rat model of meningeal inflammation induced by the chronic exposure to LTα/

IFNγ. (A) Immunofluorescent image of a coronal rat section stained with MOG. Lentiviral

vectors encoding LT-α and IFN-γ genes were injected into the subarachnoid space in the mid-

line of the brain. The white rectangles are a representative of the 10 selected ROIs at the corpus

callosum, cingulum, and external capsule. (B) Table of the number of animals used: 5 rats were

injected with LTα/IFNγ, 3 rats with GFP, and 3 naives. (C) Immunofluorescent image of a cor-

onal rat section stained with IBA1 and treated with LT-α and IFN-γ. (D) Caspr1-SMI32

immunofluorescence in LTα/IFNγ, GFP, and naive rat tissue. Confocal images of Caspr1--

stained paranodes (red) and SMI32+ axons (green). GFP, green fluorescent protein; IFNγ,

interferon-γ; LTα, lymphotoxin-α; MOG, myelin oligodendrocyte glycoprotein; ROI, region

of interest. Data and code to reproduce this figure can be found at: https://github.com/

PatGal2020/PLOS_submission.

(TIF)
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S4 Fig. Primary rat microglial cultures images treated with the pro-inflammatory cyto-

kines IFNγ, TNF, and LTα. (A) Timeline diagram showing the timings of the experiments.

Microglia were either treated with 1 dose of cytokines or 2 doses 24 h apart. The glutamate in

the supernatant was analysed in both cases after 24 h and 48 h. (B) Mean ± SEM glutamate lev-

els from replicates showing the statistical difference between controls and the cytokine treat-

ments at different concentrations: 200 ng/ml (n = 3 Control, n = 3 TNF, n = 3 IFNγ, n = 3 TNF

+ IFNγ), (C) 100 ng/ml (n = 3 Control, n = 3 LTα, n = 3 IFNγ, n = 3 LTa + IFNγ), and (D) 2

acute treatments with 100 ng/ml (n = 3 Control, n = 3 LTα, n = 3 IFNγ, n = 3 LTα + IFNγ).

Nonparametric Friedman test was performed across cytokine groups and timings and post

hoc paired-wised Wilcoxon tests to compare groups (� p< 0.05, �� p< 0.01). IFNγ, inter-

feron-γ; LTα, lymphotoxin-α; TNF, tumour necrosis factor. Data and code to reproduce this

figure can be found at: https://github.com/PatGal2020/PLOS_submission.

(TIF)

S5 Fig. Glutamate release and uptake by TNF/IFNγ-activated astrocytes. (A) Glutamate

release by primary astrocyte cultures treated with TNF/IFNγ (100 ng/ml and 200 ng/ml) after

24 h. (B) Glutamate uptake by primary astrocyte cultures treated with TNF/IFNγ (100 ng/ml

and 200 ng/ml) and 100 μM of glutamate after 24 h. Mean ± SEM for glutamate levels from

replicates showing the statistical difference between controls and the cytokine treatments.

Nonparametric Mann–Whitney test was performed across cytokine groups. IFNγ, interferon-

γ; TNF, tumour necrosis factor. Data and code to reproduce this figure can be found at:

https://github.com/PatGal2020/PLOS_submission.

(TIF)

S6 Fig. Cerebellar organotypic tissue cultures. (A) Image of a live flattened cerebellar slice.

The slices were cut at 400 μm thickness and after 8–10 DIV healthy slices flatten to approxi-

mately 100 μm. (B, C) Bright field images of cerebellar slices on culture inserts. (D) Confocal

image of a cerebellar slice stained with antibodies against Calbindin+ for Purkinje cells and

GFAP+ for astroglia. (E) Confocal image of a cerebellar slice stained with antibodies to MBP

for myelin and Calbindin for Purkinje cells. (F) Confocal image of a cerebellar slice stained

with Caspr1 antibodies. (G) Confocal image of a cerebellar slice stained with SMI32 antibod-

ies. (H) Cerebellar slices were treated with the pro-inflammatory cytokines TNF/IFNγ (3 doses

of 50 ng/ml (n = 3), 2 doses of 100 ng/ml (n = 4)), microglial-conditioned medium (2 doses of

the medium from microglia treated with 2 acute doses of 100 ng/ml of TNF/IFNγ), and gluta-

mate (2 doses of 75 mM or 100 mM). IFNγ, interferon-γ; MBP, myelin basic protein; TNF,

tumour necrosis factor. Data and code to reproduce this figure can be found at: https://github.

com/PatGal2020/PLOS_submission.

(TIF)

S7 Fig. The proportion of disrupted paranodes required for conduction failure. The differ-

ence in the proportion of disrupted paranodes within an axon of dcore of 0.6 μm can provoke

conduction failure and a variable degree of velocity reduction. (A) In axon model of 0.6 μm

core diameter, conduction failure occurred when 5 consecutive nodes were disrupted

(orange), and the paranodal and juxtaparanodal peri-axonal space widths were increased up to

0.022 and 0.22 μm, respectively. (B) Velocity decay and conduction failure of this axon model

under different patterns of disruption (orange means disrupted node, purple, healthy node,

and red denotes conduction failure).

(TIF)

S8 Fig. The proportion of disrupted paranodes required for conduction failure. The differ-

ence in the proportion of disrupted paranodes within an axon of dcore of 0.8 μm can provoke
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conduction failure and a variable degree of velocity reduction. (A) In an axon model of 0.8 μm

diameter, conduction failure occurred when 11 consecutive nodes were disrupted (orange),

and the paranodal and juxtaparanodal peri-axonal space widths were increased up to 0.022

and 0.22 μm, respectively. (B) Velocity decay and conduction failure of this axon model under

different patterns of disruption (orange means disrupted node, purple means healthy node,

and red denotes conduction failure).

(TIF)

S1 Text. (A) Algorithm for the quantification of Caspr1-Kv or Caspr1-Na overlapping signals.

(B) Code for the computational model generated in NEURON.

(DOCX)
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