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Abstract

We report the first constraints on the growth rate of the universe, f (z)σ8(z), with intrinsic alignments (IAs) of
galaxies. We measure the galaxy density-intrinsic ellipticity cross-correlation and intrinsic ellipticity
autocorrelation functions over 0.16< z< 0.7 from luminous red galaxies (LRGs) and LOWZ and CMASS
galaxy samples in the Sloan Digital Sky Survey (SDSS) and SDSS-III BOSS survey. We detect clear anisotropic
signals of IA due to redshift-space distortions. By combining measured IA statistics with the conventional galaxy
clustering statistics, we obtain tighter constraints on the growth rate. The improvement is particularly prominent for
the LRG, which is the brightest galaxy sample and known to be strongly aligned with underlying dark matter
distribution; using the measurements on scales above 10 h−1 Mpc, we obtain f 0.51968 0.0354

0.0352s = -
+  (68%

confidence level) from the clustering-only analysis and f 0.53228 0.0291
0.0293s = -

+  with clustering and IA, meaning 19%
improvement. The constraint is in good agreement with the prediction of general relativity, f σ8= 0.4937 at
z= 0.34. For LOWZ and CMASS samples, the improvement of constraints on f σ8 is found to be 10% and 3.5%,
respectively. Our results indicate that the contribution from IA statistics for cosmological constraints can be further
enhanced by carefully selecting galaxies for a shape sample.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Cosmology (343);
Accelerating universe (12); Cosmological parameters from large-scale structure (340); Redshift surveys (1378)

1. Introduction

Cosmological parameters have been precisely determined
via various observations: cosmic microwave background
(Planck Collaboration et al. 2020), large-scale structure of the
universe (Alam et al. 2017), and gravitational lensing (Hikage
et al. 2019). However, the origin of the accelerating expansion
of the universe, namely, dark energy or/and modification of
Einstein’s gravity theory, is still a complete mystery in
fundamental physics. Thus, deeper and wider galaxy surveys
are ongoing to better understand the expansion and growth
history of the universe (Takada et al. 2014; DESI Collaboration
et al. 2016).

In parallel, we need to keep exploring methods that
maximize the use of cosmological information encoded in
given observations. There is a growing interest in using
intrinsic alignment (IA) of galaxy shapes (Croft & Metzler
2000; Heavens et al. 2000; Hirata & Seljak 2004) as a
geometric and dynamical probe of cosmology complimentary
to galaxy clustering. Although there are various observational
studies of IA, they mainly focused on the contamination to
weak gravitational-lensing measurements (e.g., Mandelbaum
et al. 2006; Okumura et al. 2009; Joachimi et al. 2011; Li et al.
2013; Singh et al. 2015; Tonegawa & Okumura 2022). The
anisotropy of three-dimensional IA statistics has been detected
by Singh & Mandelbaum (2016). The full cosmological
information of IA, however, had not been investigated at
that time.

To fully exploit cosmological information encoded in
anisotropic IA, theoretical modeling of the three-dimensional
IA correlations has been developed (Okumura & Taruya 2020;
Okumura et al. 2020; Kurita et al. 2021). A series of our papers
(Taruya & Okumura 2020; Chuang et al. 2022; Okumura &
Taruya 2022) has also shown that the three-dimensional IA
statistics in redshift space provide additional constraints on the
linear growth rate of the universe, f d d aln lnmd=  (a and
δ m being the scale factor and matter density perturbation),
which is used to test modified gravity models. Furthermore,
recent studies showed that IA can be used as probes of not only
modified gravity models but also other effects such as
primordial non-Gaussianity, neutrino masses, and gravitational
redshifts (Schmidt et al. 2015; Lee et al. 2022; Zwetsloot &
Chisari 2022; Saga et al. 2023).
In this paper, besides conventional galaxy density correlation

functions, we measure intrinsic ellipticity correlation functions
from various galaxy samples in the Sloan Digital Sky Survey
(SDSS) and SDSS-III Baryon Oscillation Spectroscopic Survey
(BOSS). We then present the first joint constraints on the
growth rate from the galaxy IA and clustering. Otherwise
stated, we assume a flat ΛCDM model determined by Planck
Collaboration et al. (2020) as our fiducial cosmology through-
out this paper.

2. SDSS Galaxy Samples

We analyze the galaxy distribution over 0.16� z� 0.70
from the SDSS-II (Eisenstein et al. 2001) and SDSS-III BOSS
(Reid et al. 2016). First, we use the luminous red galaxy (LRG)
sample (0.16� z� 0.47) from the SDSS Data Release 7
(DR7). Galaxies in the sample have rest-frame g-band absolute
magnitudes, −23.2<Mg <− 21.2 (H0= 100 km s−1 Mpc−1)
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with K+E corrections of passively evolved galaxies to a
fiducial redshift of 0.3. The components of the ellipticity are
defined as
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where q is the minor-to-major-axis ratio (0� q� 1) and βx is
the position angle of the ellipticity from the north celestial pole
to east. We use the ellipticity of LRG defined by the
25 mag arcsec 2-  isophote in the r band. This LRG sample
is similar to that used in Okumura et al. (2009) and Okumura &
Jing (2009) but slightly extended from DR6 to DR7, with the
total number of the LRG used being 105,334.

We also use 353,804 LOWZ (0.16� z� 0.43) and 761,567
CMASS (0.43� z� 0.70) galaxy samples from the BOSS
DR12. For these samples, we adopt the ellipticity defined by
the adaptive moment (Bernstein & Jarvis 2002). While this
method optimally corrects for the point-spread function (PSF)
in the determined ellipticity, it is found to result in a small bias
(Hirata & Seljak 2003). The residual PSF remains in the shape
autocorrelation function at large scales (Singh & Mandelbaum
2016). As we show below, the correlation functions of these
samples are very noisy, and they do not contribute to
cosmological constraints below.

As in our earlier studies, we set the axis ratio in Equation (1)
to q= 0 (Okumura & Jing 2009; Okumura et al.
2009, 2019, 2020). We are not interested in the amplitude of
IA and marginalize it over. This simplification will not affect
results below.

3. Measurement of Correlation Functions

In this section, we measure the redshift-space correlation
functions of galaxy density and IA from the SDSS samples,
and estimate their covariance matrix.

As a conventional clustering analysis, we use a galaxy
autocorrelation (GG) function in redshift space,

r x xgg
s

g
s

g
s

1 2( ) ( ) ( )x d d= á ñ, where superscript s denotes the
quantity defined in redshift space, r = x2− x1, and xg

s ( )d 
is the galaxy number density fluctuation. We adopt the Landy
& Szalay (1993) estimator to measure it,
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where DD, RR, and DR are the normalized counts of galaxy–
galaxy, random–random, and galaxy-random pairs, respec-
tively. We then obtain the multipole moments,
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where r= |r|, μr is the direction cosine between the line of
sight and r , and ℓ is the ℓth-order Legendre polynomials. To
obtain the multipoles via Equation (3), we estimate r, rgg

s ( )x m 
with the angular bin size of Δμr = 0.1 in Equation (2) and
take the sum over μr .

The first row of Figure 1 shows multipole moments of the
GG correlation functions. The first, second, and third columns
show the results from the LRG, LOWZ, and CMASS samples,

respectively. Since the hexadecapole is noisy, we analyze only
the monopole and quadrupole moments (Kaiser 1987). These
correlation functions have been measured in various previous
works (e.g., Samushia et al. 2012; Alam et al. 2017) and our
measurements are consistent with theirs.
Next, we introduce intrinsic alignment statistics, which are

density-weighted quantities. The galaxy position–intrinsic
ellipticity (GI) correlation, g

sx +, and intrinsic ellipticity–
ellipticity (II) correlations, sx+ and

sx-, are defined by

r x x x xW1 1 , , 4X
s

g g X1 2 1 2( ) [ ( )][ ( )] ( ) ( )x d d= á + + ñ
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where Wg+( x1, x2)= γ +( x2) and W±( x1, x2)= γ+
( x1)γ +( x2)± γ×( x1)γ×( x2). For the II correlations, we label

sx+ and sx- individually as II (+) and II(−) correlations,
respectively. The GI correlation function is estimated as
(Mandelbaum et al. 2006),
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where S+D is the sum over all pairs with separation r of the +
component of the ellipticity, S+D=∑ i≠j| r γ+( j|i), with
γ+( j|i) being the ellipticity of galaxy j measured relative to the
direction to galaxy i, and S+R is defined similarly. The II
correlation functions are estimated as

r
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where S+S + =∑ i≠j| r γ+( j|i)γ+(i|j) and similarly for S×
S ×. Finally, multipole moments for the IA correlations, g ℓ

s
,x + 

and ℓ
s

,x , are obtained via the same equation as Equation (3).
Again, since the hexadecapole is noisy, we analyze only the
ℓ= 0 and ℓ= 2 moments.
The second, third, and bottom rows of Figure 1 respectively

present redshift-space multipole moments of the GI, II(+), and
II(−) correlation functions. Both the monopole and quadrupole
of the GI correlation are clearly detected in all the three
samples. Particularly, LRG are the brightest galaxy sample and
shows the strongest signal because IA has a strong luminosity
dependence. Though LOWZ has a redshift range similar with
LRG, it targets fainter galaxies and thus has higher number
density. Therefore, the LOWZ sample shows lower GI
amplitude, confirming the earlier detection by Singh &
Mandelbaum (2016). We find even a lower GI signal in the
CMASS sample. The monopole of the II correlation is clearly
detected for the LRG sample, as in Okumura et al. (2009),
while the newly measured quadrupole is noisier and consistent
with zero. Those for the LOWZ and CMASS samples have
much lower amplitude, and are somewhat consistent with zero.
Furthermore, their shapes are determined by the adaptive
moment and have nonzero correlation due to the PSF at
r> 30 h−1 Mpc (Singh & Mandelbaum 2016).
We estimate the covariance matrix for the measured

correlation functions, C C r r,ij
X X

X ℓ i X ℓ j, ,
ℓ

ℓ
[ ( ) ( )]x x¢ º ¢ ¢

¢
, with

X= {gg, g+, +, −} and ℓ= {0, 2}, using the jackknife
resampling method. While jackknife is not an unbiased error
estimator, it provides reliable error bars for the statistics whose
error is dominated by the shape noise (Mandelbaum et al. 2006).
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The error bars shown in Figure 1 are the square root of the
diagonal components of the covariance matrix.

4. Theoretical Prediction

Here we present theoretical models to interpret the measured
correlation functions. Since theoretical models are naturally
provided in Fourier space, we first present models for the
power spectra, PX

s , perform the Fourier transform,

r
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where X= {gg, g+, +,−}, and obtain the multipole moments

X ℓ
s

,x  via Equation (3).

4.1. Galaxy Correlations

For the galaxy power spectrum, we adopt the nonlinear
redshift-space distortion (RSD) model proposed by
(Scoccimarro 2004; Taruya et al. 2010),

kP b P k bf P k
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where k= |k|, μk is the direction cosine between the
observer’s line of sight and the wavevector k , and b the galaxy
bias. The quantities Pδδ and PΘΘ are the nonlinear autopower
spectrum of density and velocity fields, respectively, and PδΘ is
the their cross-power spectrum. We adopt the revised
Halofit model to compute Pδδ (Takahashi et al. 2012),
and then PδΘ and PΘΘ are computed using the fitting formulae

Figure 1. Monopole and quadrupole correlation functions of SDSS galaxies in redshift space, gg ℓ
s

,x , g ℓ
s

,x + , ℓ
s

,x+ , and ℓ
s

,x-  from top to bottom panels. The results for
LRG, LOWZ, and CMASS samples are shown from the left to right panels, respectively. The error bars are estimated from jackknife resampling. The solid curves are
the best-fit nonlinear alignment and RSD models jointly fitted for these four statistics, where the data points enclosed by the vertical lines are used. The dotted curves
are the linear predictions as references.
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derived by Hahn et al. (2015). The function D FoG is a damping
function due to the Finger-of-God (FoG) effect characterized
by the nonlinear velocity dispersion parameter σv . We adopt a
simple Gaussian function, D k kexp 2k kv vFoG

2 2 2( ) ( )m s m s= - .
With this Gaussian function, the nonlinear multipoles are
expressed analytically by a simple Hankel transform (Taruya
et al. 2009). In the linear-theory limit, Pδδ = PδΘ= PΘΘ and D

FoG= 1, and hence Equation (8) converges to the original
Kaiser formula. Since Pδδ , PδΘ, and PΘΘ are proportional to
the square of the normalization parameter of the density
fluctuation, z8

2 ( )s , free parameters for this model are θ = (bσ8,
fσ8, σv ).

4.2. Intrinsic Alignment Correlations

To quantify the cosmological information encoded in the IA
statistics, we consider the LA model, which assumes a linear
relation between the intrinsic ellipticity and tidal field (Catelan
et al. 2001). In Fourier space, the ellipticity projected along the
line of sight (z-axis) is given by

⎛
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where bK represents the redshift-dependent coefficient of the
intrinsic alignments, which we refer to as the shape bias. We
adopt the nonlinear alignment (NLA) model, which replaces
the linear matter density field δm by the nonlinear one (Bridle
& King 2007). Furthermore, the redshift-space shape field is
multiplied by the damping function due to the FoG effect.

Adopting also the nonlinear RSD model in Equation (8), the
GI and II power spectra are expressed as
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Note that Singh et al. (2015) showed that the shape field is
insensitive to RSD. While it is true in the linear RSD model,
the FoG effect comes into IA power spectra in the same way as
the GG spectrum because it is caused purely by a coordinate
transform from real to redshift space (T. Okumura et al. 2023,
in preparation).
Similarly to gg ℓ

s
,x , multipole moments of the IA correlations,

g ℓ
s

,x +  and ℓ
s

,x , can be expressed by a Hankel transform. Since
correlation functions of the projected shape are naturally
expressed by the associated Legendre polynomial basis (Kurita
& Takada 2022), the nonlinear model of g ℓ

s
,x +  and ℓ

s
,x- 

involving the FoG factor produces infinite series for each
Legendre multipole. We computed the expansion up to the 12th
order and confirmed the convergence of the formula. The
nonlinear model of ℓ

s
,x+  has a form similar with gg ℓ

s
,x . We have

four free parameters for the IA statistics, θ= (bσ8, bK σ8, fσ8,
σv). Taking the linear-theory limit of the GI and II correlation
functions, namely σv → 0 limit in Equations (10) and (11),
leads to the formulas presented in Okumura & Taruya (2020).
We will present the full expressions of IA statistics with the
Gaussian damping factor in our upcoming paper.

5. Constraints on Growth Rate

We perform the likelihood analysis and constrain the growth
rate parameter fσ8 from the three SDSS galaxy samples.
Particularly, we show how well the constraints are improved by
combining IA statistics with the conventional galaxy clustering
statistics. We compare the measured statistics, X ℓ

s
,x , where

X= {gg, g+ , + , − } and ℓ= {0, 2}, to the corresponding
predictions. The χ 2 statistic is given by

C
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where r r ;i

X
X ℓ
s

i X ℓ
s

i,
,obs

,
,thℓ ( ) ( )qx xD = -  is the difference between

the observed correlation function and theoretical prediction
with θ being a parameter set to be constrained. The analysis is
performed over the scales adopted,  r r rimin max. Since the
jackknife method underestimates the covariance at large scales,
we set the maximum separation r h100 Mpcmax

1= - . More-
over, as described in Section 2, the II correlation functions of
LOWZ and CMASS are affected by the residual PSF at
r> 30 h−1 Mpc (Singh & Mandelbaum 2016). We thus set
r h25 Mpcmax

1= -  for the II correlations of these samples. In
Appendix A, we investigate how our constraints change with
rmin, and we adopt r h10 Mpcmin

1= - . In Appendix B, we

Figure 2. Constraints on ( fσ 8, bσ 8, bK σ8, σv ) obtained from clustering-only
analysis and combined analysis of clustering and IA, determined by the
correlation functions of LRG sample at 10 � r � 100 h−1 Mpc. The contours
show the 68%, 95%, and 99% C. L. from inward.
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provide further argument that our cosmological constraints are
not biased by the effect of the uncorrected PSF. For the
clustering-only analysis, the covariance is a 20× 20 matrix,
while for the full analysis of clustering and IA, it is a 60× 60
matrix for LRG and 48× 48 for LOWZ and CMASS. The data
points used for the analysis are enclosed by the vertical lines in
Figure 1.

Figure 2 shows the parameter constraints obtained from the
LRG sample. The blue and orange contours are results with the
clustering-only analysis and its combination with IA statistics,
respectively. For the clustering-only analysis, after margin-
alizing over bσ8 and σv, we obtain the constraint as
f 0.51968 0.0354

0.0352s = -
+  (68% confidence level). For the combined

analysis of clustering and IA, we obtain f 0.53228 0.0291
0.0293s = -

+ 
by further marginalizing over the shape bias parameter bK .
Namely, the constraint on f σ8 is improved by 19% by adding
the IA statistics. Note that, as we set q= 0 in Equation (1), the
definition of bK here is different from literature and one cannot
directly compare the values.

The left and right panels of Figure 3 show results similar to
Figure 2 but for LOWZ and CMASS, respectively. Using
LOWZ, we obtain f 0.50438 0.0229

0.0226s = -
+  (GG only), and

f 0.49378 0.0201
0.0201s = -

+  (GG+IA). The LOWZ is a denser sample
than the LRG by targeting fainter galaxies, and thus, even the
galaxy clustering alone puts tighter constraints. However,
combining the IA statistics, LRG provides almost as a strong
constraint as LOWZ. CMASS is also a fainter population at
higher redshift, 0.43< z< 0.70. With the GG-only analysis,
we obtain f 0.46148 0.0154

0.0156s = -
+ , and with the GG+IA analysis,

f 0.46288 0.0151
0.0149s = -

+ . Our analysis of these three galaxy
samples demonstrates that the contribution of IA to cosmolo-
gical constraints can be enhanced by adopting an optimal
weighting to brighter galaxies (Seljak et al. 2009). Exploring
such an optimization is our future work.

The best-fit nonlinear models jointly fitted for the clustering
and IA statistics are shown by the solid curves in Figure 1.

Reduced χ2 values obtained for LRG, LOWZ, and CMASS
samples are χ2/ν= 1.85, 1.14, and 2.42, respectively, where ν
is the degree of freedom, ν= 56 for LRG and ν= 44 for
LOWZ and CMASS. The large χ2 value for the CMASS
sample is due to small error bars in the GG correlation. If we
adopt r h15 Mpcmin

1= - , the minimum χ2 is reduced to
χ2/ν= 1.68. Accordingly, the best-fitting value of fσ8 is
shifted (see Figure 5 in Appendix A).
Finally, Figure 4 summarizes the constraints on fσ8 from the

three galaxy samples we considered. As shown in the lower
panel, the constraint gets tighter by adding IA statistics to the
galaxy clustering statistics. Overall, the derived results are
consistent with the prediction of ΛCDM determined from the
Planck satellite experiment (Planck Collaboration et al. 2020).
It indicates that combining IA and clustering statistics enables
us to obtain robust and tight constraints.

Figure 3. Same as Figure 2, but for LOWZ (top) and CMASS (bottom) samples. For these samples, the II correlations only at 10 � r � 25 h−1 Mpc are used, and the
GG and GI correlations at 10 � r � 100 h−1 Mpc are used.

Figure 4. Upper panel: constraints on growth rate f (z)σ8(z) from three SDSS
galaxy samples compared to the best-fitting ΛCDM model from the Planck
experiment. We adopt r h10 Mpcmin

1= - . Lower panel: 1σ error of the
growth rate constraints, Δ( fσ8)/fσ8.
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6. Conclusions

We have presented the first cosmological constraints using
IA of the SDSS galaxies. We have measured the redshift-space
GI and II correlation functions of LRG, LOWZ, and CMASS
galaxy samples. By comparing them with the models of
nonlinear alignment and RSD effects, we have constrained the
growth rate of the density perturbation, f (z)σ8(z). We found
that combining IA with clustering enhances the growth rate
constraint by ∼19% compared to the clustering-only analysis
for the LRG sample. This improved constraint on fσ8 is only
slightly worse than that obtained from the LOWZ, which is a
much denser sample by targeting fainter galaxies. This
indicates a potential that the contribution of the IA statistics
can be further enhanced by adopting an optimal weighting to
brighter galaxies.

In this work we considered only the dynamical constraint via
RSD. However, baryon acoustic oscillations (BAOs) observed
in the galaxy distributions (Eisenstein et al. 2005) were shown
to be also encoded in galaxy IA statistics and thus useful to
tighten geometric constraints (Chisari & Dvorkin 2013;
Okumura et al. 2019). The cosmological analysis of IA
simultaneously using RSD and BAO will be shown in our
future work.

The benefits of using IA can be further enhanced by
improving the model. In this paper we worked with a simple
extension of the NLA model to include partly the FoG effect
(T. Okumura et al. 2023, in preparation). However, more
sophisticated nonlinear models of IA statistics have been
proposed recently (Blazek et al. 2019; Vlah et al. 2020; Akitsu
et al. 2021; Matsubara 2022). These models enable us to use
the measured IA correlation functions down to smaller scales,
which will enhance the science return from IA of galaxies.
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Appendix A
Scale Dependence of Parameter Constraints

In this Appendix, we examine how cosmological constraints
vary with the scales used in the likelihood analysis. It is
important because the growth rate constraint is prone to have
scale dependence due to various nonlinear effects (e.g.,
Okumura & Jing 2011). The left column of Figure 5 shows
the constraints on parameters for the LRG sample as a function
of the minimum separation rmin after other three are margin-
alized over. The constraint on fσ8 with the clustering-only

Figure 5. Constraints on model parameters as a function of the minimum separation, rmin, obtained from clustering-only analysis and combined analysis of clustering
and IA for LRG (left), LOWZ (middle), and CMASS (right) samples. We show the results for fσ8, bσ8, bKσ8, and σv from the top to bottom rows. Theoretical
prediction with 68% C. L. based on the Planck experiment is shown as the yellow regions in the top row.
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analysis shows a strong scale dependence, with the same trend
as the simulation result (Okumura & Jing 2011). The combined
analysis of clustering and IA shows the same tendency. Since
the combined analysis with the scale cut of r h10 Mpcmin

1= - 
gives the best-fitting value of fσ8 expected at the large scale
limit (25< r< 100 [ h−1 Mpc]), we present it as the main result
of this paper. The middle and right columns of Figure 5 show
the scale dependence of parameter constraints obtained from
the LOWZ and CMASS samples, respectively. The overall
tendency of the constraints on fσ8 is similar to that for the LRG
sample. For consistency, we also adopt r h10 Mpcmin

1= -  for
the analysis of the LOWZ and CMASS samples. However, as
mentioned in Section 5, small error bars in the GG correlation
of the CMASS sample result in the large χ2 value when we
choose r h10 Mpcmin

1= -  (χ2/ν= 2.42). If we adopt
r h15 Mpcmin

1= - , the minimum χ2 is reduced to
χ2/ν= 1.68. Accordingly, the best-fitting value of fσ8 is
shifted.

Appendix B
Effect of PSF on Parameter Constraints

As described in Section 2, the ellipticity of LRG is defined
by the isophote of the light profile while that of LOWZ and
CMASS galaxies is by the adaptive moment. Singh &
Mandelbaum (2016) constructed the shape catalog for the
LRG and LOWZ samples using a re-Gaussianization techni-
que, which is based on the adaptive moment but involves
additional steps to correct for non-Gaussianity of both the PSF
and galaxy surface brightness profile (Hirata & Seljak 2003).
Utilizing it, Singh & Mandelbaum (2016) found that while the
isophotal shape is not corrected for the PSF, the measured IA
statistics are not so biased because the method uses the outer
shape of the galaxies. Eventually, the uncorrected PSF affects
only the amplitude of the measured IA statistics, not the shape,
which has already been confirmed by our earlier work
(Okumura et al. 2009). Furthermore, Okumura & Jing (2009)
showed that the amplitude of IA, namely the shape bias bK,
determined by the GI and II correlations is fully consistent with
each other. Therefore, while the constraint on bK can be
different from the true value, that on the growth rate f is not
expected to be biased after bK is marginalized over. While the
adaptive moment corrects for the PSF in the ellipticity, it results
in a small bias (Hirata & Seljak 2003). However, it is a constant
bias, and thus it affects the amplitude of bK , similarly to the
isophotal shape definition but the effect is smaller. To be
conservative, we exclude the II correlation at r> 25 h−1 Mpc,
which is affected if we adopt the less accurate, de Vaucouleurs
model fit (Singh & Mandelbaum 2016). Namely, the
constraints from LOWZ and CMASS samples on fσ8 with
r h25 Mpcmin

1= -  in Figure 5 do not use the data of the II
correlation., Nevertheless, the constraints are almost equivalent
to those with r h15 Mpcmin

1= - . It implies that the bias that
arises from the uncorrected PSF is negligible for the shape
definition of LOWZ and CMASS galaxies.

For all the three galaxy samples, constrained values of the
model parameters do not change significantly by combining the
IA statistics with the clustering statistics but shrink the error
bars. It demonstrates that systematic effects associated with the
shape measurement do not contribute to biases in the parameter

constraints. More concrete discussion of uncorrected PSF
effects on cosmological constraints requires the construction of
shape catalogs in which the systematic effects are fully
corrected for Hirata & Seljak (2003) and Singh & Mandelbaum
(2016). It will be investigated in future work.
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