Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology

Kirischuk, Sergei and Sinning, Anne and Blanquie, Oriane and Yang, Jenq-Wei and Luhmann, Heiko J. and Kilb, Werner (2017) Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Frontiers in Cellular Neuroscience, 11. ISSN 1662-5102

[thumbnail of pubmed-zip/versions/1/package-entries/fncel-11-00379/fncel-11-00379.pdf] Text
pubmed-zip/versions/1/package-entries/fncel-11-00379/fncel-11-00379.pdf - Published Version

Download (2MB)

Abstract

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.

Item Type: Article
Subjects: STM Library Press > Medical Science
Depositing User: Unnamed user with email support@stmlibrarypress.com
Date Deposited: 05 Jun 2023 04:46
Last Modified: 21 Sep 2024 03:52
URI: http://journal.scienceopenlibraries.com/id/eprint/1429

Actions (login required)

View Item
View Item