High Vulnerability of Oligodendrocytes to Oxidative Stress Induced by Ultrafine Urban Particles

Kim, Ji Young and Kim, Jin-Hee and Kim, Yong-Dae and Seo, Je Hoon (2020) High Vulnerability of Oligodendrocytes to Oxidative Stress Induced by Ultrafine Urban Particles. Antioxidants, 10 (1). p. 4. ISSN 2076-3921

[thumbnail of antioxidants-10-00004-v3.pdf] Text
antioxidants-10-00004-v3.pdf - Published Version

Download (4MB)

Abstract

Oligodendrocytes, myelin-forming cells in the brain, are vulnerable to oxidative stress. Recent work indicates that air pollution causes demyelinating diseases such as multiple sclerosis. However, little is known about the mechanism of toxicity of ultrafine particulate matters (PMs) to oligodendrocytes. Here, we aimed to determine whether oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs) are more vulnerable to ultrafine urban PMs (uf-UPs) than other types of brain cells and damage to adult OPCs and mOLs in the mouse brain exposed to uf-UPs. For in vitro experiments, following exposure to various concentrations (2, 20, and 200 μg/mL) of uf-UPs, we measured survival rates, the amount of reactive oxygen species (ROS), and the total antioxidant capacities (TACs) of brain cells isolated from neonatal Sprague-Dawley rats. For animal experiments, after a four-week exposure to a uf-UP suspension (20 μL, 0.4 mg/mL), we enumerated the number of damaged cells and typed damaged cells in the white matter of the cerebellum of uf-UP-exposed mice. MTT assays and Hoechst staining demonstrated that OPCs and mOLs were more vulnerable to uf-UP-induced damage than astrocytes and cortical neurons at 2, 20, and 200 μg/mL of uf-UPs examined in this study (p < 0.05). Damage to OPCs and mOLs depended on uf-UP concentration. DCF assays and DHE staining indicated that the amount of ROS generated in OPCs and mOLs was significantly higher than in other brain cell types (p < 0.05). In contrast, TAC values in OPCs and mOLs were significantly lower than those of other brain cell types (p < 0.05). Fluoro-Jade B (FJB)-positive cells in the cerebellar white matter of the uf-UP-exposed group were significantly greater in number relative to the control group. Double immunofluorescence indicated that FJB-positive cells are NG2-positive adult OPCs and carbon anhydrase II-positive mOLs. Taken together, our findings suggest that oxidative stress induced by uf-UPs in the brain impairs adult OPCs and mOLs, causing demyelination and reducing the capacity for remyelination.

Item Type: Article
Subjects: STM Library Press > Agricultural and Food Science
Depositing User: Unnamed user with email support@stmlibrarypress.com
Date Deposited: 04 Jul 2023 04:17
Last Modified: 24 Jul 2024 09:17
URI: http://journal.scienceopenlibraries.com/id/eprint/1717

Actions (login required)

View Item
View Item